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Abstract

Within the last decades, surgical robot systems have been integrated operation
rooms worldwide. However, in current robotic procedures, the surgical personnel
has to devote a significant part of attention in order to ensure and monitor seamless
functioning of the robot system.

To overcome this limitation, this thesis explores the feasibility of developing a
system for safe and intuitive use of surgical robots, based on state-of-the-art
range imaging cameras and newly developed algorithms. A novel concept for
an Operating Room (OR) monitoring system is proposed that can perceive the
environment of a surgical robot using multiple 3D cameras and detect potentially
harmful situations between the robot, its surroundings and the persons in its
vicinity, i.e. the OR personnel and the patient. Such a system is realized in a
generic way in order to be applicable to different surgical robot systems. It is
optimized for a low spatial footprint for not interfering with the OR personnel and
their actions in already crowded ORs. Furthermore, the system provides intuitive
feedback to the OR personnel whenever safety-critical events are detected, without
drawing on their attention otherwise.

The realized system was extensively evaluated using the OP:Sense surgical re-
search platform. Based on the proposed approach of establishing a virtual safety
zone around each robot arm, the system was shown to reliably detect and therefore
avoid impending collisions, without requiring information about the trajectory
of the robot. To ensure the applicability of use within the operating room, the
effects of sterile draping on range imaging cameras were analyzed. A filtering
method was put forward to eliminate these effects within the realized ToF camera
system, allowing for successful detection of impending collisions even for draped
robots.

The results indicate that a 3D-camera-based supervision system can effectively
contribute to the safety of use of surgical robot systems in the OR, allowing
the OR personnel to completely focus on their medical tasks. The proposed
methods contribute to scene supervision for human-robot cooperation and show
the feasibility of the approach.





Zusammenfassung

Motivation

Seit die ersten kommerziell erhältlichen Chirurgierobotersysteme Mitte der Neun-
ziger Jahre klinisch eingesetzt wurden, haben sich sowohl der Einsatz derartiger
Systeme als auch die Vielfalt der abgedeckten Operationen vervielfacht. Im Jahr
2014 wurden alleine mit dem am Markt führenden da Vinci System über 500 000
Operationen durchgeführt.

Insbesondere im Bereich der minimal-invasiven Chirurgie hat der Einsatz von
Chirurgierobotern jedoch neben den medizinischen Aspekten noch weitere Kon-
sequenzen: Der Chirurg führt die Operation von außerhalb des sterilen Bereichs
per Telemanipulation des Robotersystems durch, was direkte Auswirkungen auf
die Arbeitsabläufe und Rollenverteilung im Operationssaal hat. Da aktuelle und
in der Entwicklung befindliche chirurgische Robotersysteme größtenteils keine
Sensorik enthalten, mit der sie ihre Umgebung erfassen könnten, muss das OP-
Personal sowohl die korrekte Funktionsweise als auch die Kollisionsfreiheit der
Robotersysteme fortlaufend überwachen.

Ziel dieser Arbeit ist daher die Entwicklung und Umsetzung eines 3D-Kamera-
basierten Überwachungssystems für den Operationssaal, das die sichere Anwen-
dung chirurgischer Robotersysteme überwacht und mittels räumlicher erweiterter
Realität (AR) Informationen z.B. zum Roboterzustand intuitiv für das OP-Personal
erfassbar macht. Hierdurch soll das OP-Personal unterstützt und entlastet werden,
um ihm die uneingeschränkte Konzentration auf die medizinischen Aspekte der
Operation zu ermöglichen.

Methoden

Im Mittelpunkt dieser Arbeit steht die Konzeption und Realisierung eines Über-
wachungssystems bestehend aus mehreren, räumlich verteilten 3D Kameras, das
die unmittelbare Umgebung der Operationsliege in Echtzeit als Punktwolke erfasst
und in Bezug auf verschiedene Sicherheitsaspekte analysiert. Um jeden Roboter-
arm wird eine virtuelle, dynamische Sicherheitshülle gebildet, mittels derer die
erfasste Szene segmentiert wird. Bei Verletzungen der virtuellen Sicherheitshülle
wird zunächst eine räumliche Analyse durchgeführt, um die Ursache der Verlet-
zung zu ermitteln. Falls diese im Eindringen eines externen Objektes oder eines
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Menschen besteht, werden je nach Zustand des Robotersystems verschiedene
Reaktionen ausgeführt, um beispielsweise Kollisionen zwischen Roboter und
Mensch zu vermeiden.

Grundlage für dieses Konzept ist der entwickelte Shape Cropping Algorithmus,
mittels dessen die sicherheitshüllenbasierte Segmentierung der erfassten Szene
umgesetzt wird. Weiterhin ermöglicht dieser Algorithmus die Detektion des
Robotersystems in der Szene, um den korrekten Aufbau des Robotersystems in
Übereinstimmung mit einer präoperativen Planung zu überprüfen.

Das entwickelte Kamerasystem gliedert sich in zwei separate Teilsysteme, deren
Kameras die Szene anhand unterschiedlicher Technologien dreidimensional er-
fassen. Das erste Teilsystem besteht aus sieben Time-of-Flight (ToF) Kameras aus
dem industriellen Bereich, das zweite Teilsystem aus vier Kinect v1 Kameras.

Aufgrund der unterschiedlichen Vor- und Nachteile der verwendeten Kamera-
systeme bezüglich Auflösung, Latenz und externer Kontrolle der Kameraparameter
werden die erfassten Informationen in ein zweistufiges Szenenmodell integriert.
Die erste Ebene des Szenenmodells beinhaltet niedrig aufgelöste Punktwolken,
die von den Time-of-Flight-Kameras mit einer geringen Latenz erfasst werden
und über keine semantischen Informationen verfügen. Diese Daten bilden die
Grundlage für sicherheitsrelevante Funktionen wie die Erkennung potentieller
Kollisionen. Die zweite Ebene beinhaltet höher aufgelöste räumliche Daten inklu-
sive semantischer Informationen, insbesondere der Erkennung von Menschen in
der Szene. Diese Daten sind jedoch erst mit einer größeren Latenz verfügbar.

Zur Überbrückung dieser semantischen Lücke wurde ein Algorithmus entwick-
elt, der die Vorwärtspropagation von semantischen Annotationen ermöglicht.
Dieser erlaubt es, die auf der zweiten Ebene des Szenenmodells vorhandenen
semantischen Annotationen fortlaufend vorwärts zu berechnen, so dass sie auf
der ersten Ebene des Szenemmodells direkt zur Verfügung stehen. Somit kann
beispielsweise bei der Detektion einer bevorstehenden Kollision des Roboters
anhand der vorwärts-berechneten semantischen Information erkannt werden, ob
der Roboter mit einem Menschen oder der Umgebung kollidieren würde, so dass
unterschiedliche Reaktionen ausgelöst werden können.

Um Informationen zum Zustand des Robotersystems oder andere Hinweise intui-
tiv für das OP-Team verfügbar zu machen, wurde ein entsprechendes Konzept ent-
worfen und umgesetzt, das auf projektorbasierter räumlicher erweiterter Realität
basiert. Dies ermöglicht (i) die Visualisierung des Zustandes des Chirurgieroboters
durch eine farblich kodierte, passgenaue Projektion auf den realen Roboterarm,
(ii) die Lenkung der Aufmerksamkeit des OP-Teams im Falle sicherheitskritischer
Situationen sowie (iii) im Falle von minimal-invasiven Eingriffen die Augmen-
tierung des Patienten mit den Posen der laparoskopischen Instrumente.



Ergebnisse

Das vorgestellte Konzept für ein Überwachungssystem wurde im Rahmen dieser
Arbeit vollständig umgesetzt und die Effektivität des Systems konnte in ver-
schiedenen Versuchen anhand der Forschungsplattform OP:Sense nachgewiesen
werden. Die realisierten Kamerasysteme gewährleisten eine redundante Ab-
deckung des Arbeitsraums rund um die Operationsliege, so dass die virtuelle
Sicherheitshülle um die Roboter jederzeit von mehreren Kameras überwacht wird.
Ein speziell für den Einsatz im OP entworfener, projektionsbasierter Algorith-
mus zur Registrierung der verschiedenen 3D-Kamerasysteme wurde erfolgreich
evaluiert.

Basierend auf der erfolgten Registrierung der Kamerasysteme konnte gezeigt wer-
den, dass das Konzept der virtuellen Sicherheitshülle um den Roboter die Erken-
nung potentieller Kollisionen ermöglicht, so dass diese sicher vermieden werden
können. Um die Nutzung dieses Konzepts im Operationssaal zu ermöglichen,
wurden die Auswirkungen der sterilen Schutzhülle, die Chirurgierobotern im
Operationssaal übergestülpt wird, auf die verschiedenen 3D-Kamerasysteme
analysiert. Eine Methode zur Entfernung entsprechender Artefakte in den ToF-
Kamerabildern wurde entwickelt und evaluiert.

Experimente zur Bewertung des Algorithmus zur Vorwärtspropagation seman-
tischer Annotationen zeigten, dass der entwickelte Algorithmus eine zuverlässige
und präzise Methode darstellt, um die in der zweiten Ebene des Szenenmodells
enthaltenen semantischen Informationen trotz Latenz auf die erste Ebene des
Szenenmodells zu übertragen und somit bei drohenden Kollisionen des Roboters
zwischen Menschen und Umgebung unterscheiden zu können.

Diskussion, Ausblick und Fazit

Das in der Arbeit vorgestellte Konzept für ein 3D-kamerabasiertes Überwachungs-
system des Operationssaals wurde erfolgreich realisiert und anhand der For-
schungsplattform OP:Sense evaluiert. Die Ergebnisse zeigen, dass das System-
konzept sich zur sicheren und redundanten Überwachung chirurgischer Roboter-
systeme eignet und somit das Potential hat, das OP-Personal bei roboter-assistierten
Operationen zu unterstützen und zu entlasten.

Aufbauend auf dem vorgestellten Überwachungssystem bieten sich künftige
Arbeiten im Bereich der räumlichen und semantischen Integration in den Opera-
tionssaal, der Verbindung des Überwachungssystems mit einer Wissensbasis und
der Transfer des Konzepts in ein industrielles Umfeld an.

Zusammengefasst leistet die Arbeit wissenschaftliche Beiträge in den Bereichen
der redundanten 3D-Überwachung und Einsatz von 3D-Kameras im Opera-
tionssaal sowie sicherer Mensch-Roboter-Kooperation.
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1. Introduction

In the early 1970s, the National Aeronautics and Space Agency (NASA) proposed the
first concept for telerobotic healthcare. In the mid-1980s, first surgical robot sys-
tems were developed. In the mid-1990s, the first commercially available surgical
robot systems were clinically used.

Since then, the field of surgical robot systems has come a long way: Surgical
robot systems are nowadays used in a wide field of interventions, ranging from
minimally invasive procedures to orthopedics, pediatrics, neurosurgery and ra-
diosurgery. Medical robots in general span an even wider field that encompasses
surgery, but also rehabilitation and imaging.

In 2000, the da VinciTM surgical robot system was the first such system to receive
clearance from the Food and Drug Administration (FDA) for general Minimally
Invasive Robotic Surgery (MIRS) and since then it has clearly dominated the
market. In 2015, Intuitive Surgical reported a total of almost 3 500 installations of
the da VinciTM, used in over half a million interventions in the year before [72].
However, there are several drawbacks to the system, such as the sheer size and
volume of the monolithic robot, its lack of force sensing capabilities and it’s closed
nature.

Currently, multiple new systems for MIRS are in advanced research stages or close
to commercialization that aim to overcome these limitations [60]. The trend of
development and research clearly points to smaller, more modular systems that
allow for a higher flexibility in the OR, such as the MiroSurge system developed
by German Aerospace Center (DLR), Germany. A further trend is the application
of preoperative planning in order to find the optimal configuration of a surgical
robot system, depending on the specific patient anatomy and clinical indication.

Further, there is a clear trend towards automation and integration of the OR.
Currently, many vendors only market closed solutions for integrated operating
rooms and do not allow for interoperability with other systems. Apart from
the commercial interests of each medical company, this is also due to a lack
of standards for exchange of information between medical devices in the OR.
Creating a technical basis for vendor-independent safe integration and networking
of medical devices is therefore an active field of research. One example is the
OR.NET project that brings together vendors, both of integrated ORs and medical
equipment, with research institutes and clinics to develop open standards for
interconnection of medical devices [97].
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1. Introduction

1.1. Motivation

The design and development of surgical robot systems is naturally focused on the
medical aspects of the respective system and domain, e.g. the specific requirements
of a certain type of intervention. Therefore, most surgical robot systems do not
include exteroceptive sensors that would allow them to perceive and react to
their environment. It is up to the OR personnel to supervise the motions of the
robot throughout an intervention and intervene in case of hazardous situations.
However, during MIRS the surgeon is spatially removed from the situs and cannot
notice such situations. This can lead to hazardous situations, which are illustrated
by reports of OR theatre teams that had “to quickly tell the surgeon to stop because
the robot arms were going to hit the patient” [151].

As more and more surgical robot systems enter the market or are close to com-
mercialization, it would be beneficial to implement a generic sensor system for
the OR that allows to supervise the safe use of different surgical robot systems.
This way, an additional, redundant safety layer could be provided that operates
independently of the respective surgical robot system. Further, such a system
contributes to allowing the surgical team to completely focus on their medical
tasks without having to divide attention to the correct working of the surgical
robot system.

Based on the ongoing research on interoperability between systems in the OR,
which is expected to come to fruition in the near future, and the development of
new surgical robot systems that allow more flexibility than the current systems,
now is the right time for thinking ahead and asking the question: If the robot can
be integrated with the room, can the room monitor safety of the robot?

1.2. Aim of this thesis and research questions

To answer this question, this thesis aims to explore the feasibility of developing a
supervision system, based on state-of-the-art range imaging cameras and newly
developed algorithms. Therefore, a novel concept for an OR monitoring system
is proposed that can perceive the environment of a surgical robot using multiple
3D cameras and detect potentially harmful interactions between the robot and
the humans, i.e. the OR personnel and the patient. Such a system (i) needs to
be realized in a generic way in order to be applicable to different surgical robot
systems, (ii) has to be optimized for a low spatial footprint for not interfering
with OR personnel and its actions in already crowded ORs and (iii) must provide
intuitive feedback to the OR personnel whenever safety critical events are detected,
without drawing on their attention otherwise.
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1.3. Outline

Multiple open research questions are addressed that have not been investigated
before:

• How can a system be realized that adds a layer of safety to different surgical
robots without requiring hardware modifications?

• How does sterile draping, in which robots are covered during interventions,
affect scene acquisition by current range imaging cameras?

• Can a 3D camera based supervision system detect the positions of surgical
robots in an intraoperative setting and verify the correct setup of the robot
system?

• Is it possible to reliably monitor the performance of the surgical robot and
detect potential collisions with its surroundings before they occur?

• How can feedback about the safety state of the surgical robot system be
provided to the OR personnel in an intuitive and distraction-free manner?

1.3. Outline

This thesis is structured as follows:

State of the art A brief introduction is given on relevant norms and definitions,
followed by an overview of current and upcoming surgical robot systems.
Different principles of range imaging are discussed and supplemented by
an outlook of current and upcoming 3D cameras. Previous research on the
application of 3D cameras and augmented reality in the OR is discussed as
well as side effects and non-clinical performance characteristics of surgical
robot systems. An overview of different approaches to safe human-robot
collaboration is given with a focus on external optical sensing. Finally, open
research questions are discussed and related to the work performed in this
thesis.

System concept Technical and clinical prerequisites of the modular supervision
system for OR monitoring are discussed and the realized camera system
as well as corresponding algorithms are introduced. The safety concept of
establishing a safe zone around the robot is detailed with the according Shape
Cropping algorithm and the proposed safety features. Clinical motivation
for establishing a Spatial Augmented Reality (SAR)-based feedback system
are discussed and the augmentation concept is presented.

Realization The hardware and software components used in this thesis are de-
tailed as well as the realized distributed system architecture. An in-depth
description of the supervision system is given, discussing the camera place-
ment and the implementation of the different camera systems. Two devel-
oped algorithms closely related to the supervision system are described,
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namely the projector-based registration method and the algorithm for for-
ward propagation of semantic labelling. For the safety system, the Shape
Cropping algorithm and its application to robot localization, detection of
impending collisions and continuous pose supervision are explained. The
chapter closes with a description of the concrete setup of the SAR system for
feedback to the OR personnel and the realized feedback features.

Results Evaluation and results of the realized camera systems are presented
in terms of interference, performance, registration accuracy and analysis
of the achieved coverage. The use cases and results obtained for forward
propagation of semantic labelling are discussed, followed by results of the
safety concept including performance of the Shape Cropping algorithm itself
and its applications to robot localization, collision avoidance and continuous
pose supervision. Last, a description and the results of a user study on the
implemented SAR features are given.

Conclusions The results obtained in the previous chapter are discussed in re-
lation to the research questions brought forward in the introduction. The
contributions of this thesis are listed and directions for potential future
research are indicated.
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This chapter provides an overview of background knowledge and research per-
formed on the topics covered in this thesis. It starts by highlighting the relevant
norms and definitions for general and surgical robotics as well as human-robot
collaboration in section 2.1, followed by short introductions of the main concepts
of intuitive use and Augmented Reality (AR).

Section 2.2 gives a brief overview of technologies relevant for this thesis, starting
with current and upcoming surgical robot systems for MIRS. The main sensing
principles of range imaging cameras are discussed and an extensive overview of
current and upcoming range imaging cameras is presented.

Section 2.3 details existing research on applications of the previously introduced
technology and concepts. Works in the surgical domain are presented first, fol-
lowed by works on safe human-robot interaction in a general context.

Based on the discussed fundamentals and research works, open research questions
are identified in section 2.4. Finally, the research hypotheses are presented that
have been explored in this thesis.

2.1. Norms and definitions

In the following, a short overview of relevant norms and definitions for robot
systems and their safe application in human-robot collaboration is given. The
term intuitive use is then introduced and a short taxonomy of augmented reality is
presented.

2.1.1. Norming bodies and entities

Worldwide standards are developed and published by three international organi-
zations who, as an alliance, form the World Standards Cooperation (WSC):

• The International Organization for Standardization (ISO) develops “market-
relevant International Standards that support innovation and provide solu-
tions to global challenges” [73]. ISO standards cover a wide range of topics
from quality management to social responsibility and occupational health
and safety.
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• The International Electrotechnical Commission (IEC) provides “International
Standards for all electrical, electronic and related technologies” [66].

• The International Telecommunication Union (ITU) is responsible for “the tech-
nical standards that ensure networks and technologies seamlessly intercon-
nect” [80]. It operates with a global perspective, e.g. by allocating global
radio spectrum and satellite orbits.

ISO and IEC have published and/or are working on standards that concern
robotic surgery or safety in human-robot collaboration, which will be referenced
in either their international or German version (as published by Deutsches Institut
für Normung (DIN) and Verband der Elektrotechnik (VDE)). Due to its nature, the ITU
has not defined any standards that concern safety of robotic surgery. This might
change if telesurgery gains widespread adoption and the question of prioritized
data transmissions for such procedures becomes more prompting.

2.1.2. Robotics

To distinguish between different kinds of actuated systems, ISO 8373:2012 “Robots
and robotic devices – Vocabulary” [77] gives the following definitions:

• robot: “actuated mechanism programmable in two or more axes with a degree
of autonomy, moving within its environment, to perform intended tasks”. It
is further noted that “a robot includes the control system and interface of the
control system”.

• robotic device: “actuated mechanism fulfilling the characteristics of an indus-
trial robot or a service robot, but lacking either the number of programmable
axes or the degree of autonomy”, for example a “teleoperated device”.

• robot system: “system comprising robot(s), end effector(s) and any machinery,
equipment, devices, or sensors supporting the robot performing its task”.

In line with these definitions, the FDA considers Robot Assisted Surgical De-
vices (RASDs) as “technically not robots, since they are guided by direct user
control” [83]. In fact, they were first cleared by the FDA as being equivalent to
laparoscope holding devices.

Concerning medical applications, the Robotic Consensus Group of the Society of
American Gastrointestinal and Endoscopic Surgeons and Minimally Invasive Robotic
Association defines robotic surgery as “a surgical procedure or technology that adds
a computer technology-enhanced device to the interaction between surgeon and
the patient during a surgical operation and assumes some degree of freedom of
control heretofore completely reserved for the surgeon.” [59].
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2.1.3. Safety in industrial robotics

The technical committee 184/SC 2 of the ISO has published several standards that
deal with safety requirements for the usage of industrial robots. In the scope of
this thesis, the most notable such standard is ISO 10218:2011 “Robots and robotic
devices – Safety requirements for industrial robots”. It consists of two parts that
detail basic safety requirements for the robot itself [75] and for the full robotic
system and its integration [76].

Concerning human-robot collaboration, ISO 10218 puts forward the following
definitions:

• Collaborative robot: “robot designed for direct interaction with a human within
a defined collaborative workspace” [75, 3.3]

• Collaborative workspace: “space in which purposely designed robots work in
direct cooperation with a human within a defined workspace” [76, 3.4]

• Collaborative operation: “workspace within the safeguarded space where the
robot and a human can perform tasks simultaneously during production
operation” [75, 3.5]

Furthermore, ISO 10218-1 distinguishes four different methods that can be applied
to collaborative operations, as given in Table 2.1. These types of collaborative
operations will be further detailed by the upcoming technical specification ISO/TS
15066 “Robots and robotic devices – Safety requirements for industrial robots –
Collaborative operation”. Following the ISO standardization process, this specifi-
cation will be valid for three years after publication and might then be integrated
into ISO 10218-2 if it is deemed suitable for a standard.

For classification of safety risks in collaborative operations, two kinds of potential
contact between human and robot are distinguished in both ISO 10218 and ISO
15066:

• Quasi-static contact: Part of the body of the operator is clamped between a
moving part of the robot system and some part of the environment.

• Transient or dynamic contact: The operator is not clamped by the contact and
can retract or recoil freely.

In both ISO 10218-1 and ISO 15066, a maximal allowed velocity for the robot’s end-
effector of 250 mm/s is specified for human-robot interaction to limit the energy
that can be transferred to the human in case of either kind of contact. In order
to allow for a more accurate estimation of potential injuries caused by adverse
contact events, biomechanical limits of the human body are researched in different
projects and will be included in ISO 15066 [61, 117].
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Clause Type Main means of risk reduction
5.10.2 Safety-rated monitored

stop
No robot motion when operator is in col-
laborative space

5.10.3 Hand guiding Robot motion only through direct input of
operator

5.10.4 Speed and separation
monitoring

Robot motion only when separation dis-
tance above minimum separation distance

5.10.5 Power and force limited
by inherent design or
control

In contact events, robot can only impart
limited static and dynamic force

Table 2.1.: Methods for collaborative operation and according means of risk reduc-
tion according to ISO 10218-1 [75].

2.1.4. Safety in medical robotics

Contrary to the domain of industrial robotics and the domain of personal care
robots, for which a safety standard was published in 2014 [78], there exists no
such standard for medical robots yet. In 2011, the Joint Working Group (JWG) 9 was
formed between ISO and the IEC. JWG 9 is working on a technical report that will
define medical robots as Medical Electric Equipment with a Degree of Autonomy (DoA).
This technical report will offer guidance on methodologies for risk assessment and
basic safety and essential performance for such systems.

In addition to defining a general safety standard for medical robotics, JWG 9
proposed to define particular standards for surgical robots and rehabilitation
robots [68]. Since April 2015, the new JWG 35 is working on a standard for medical
robots in surgery. This standard is planned to be completed in November 2018 as
IEC 80601-2-77 [79].

2.1.5. Intuitive use

Naumann et al. regard intuitive use as a characteristic of human-machine-systems.
They postulate that intuitive use cannot be applied to a technical system per se
but has to be tied to a specific context, e.g. to achieve a certain objective with a
technical system. This results in the following definition: “A technical system is, in
the context of a certain task, intuitively usable while the particular user is able to interact
effectively, not-consciously using previous knowledge” [130].

This definition depends on the term effectiveness, which is defined by ISO as
“accuracy and completeness with which users achieve specified goals” [74]. Therefore
effectiveness can be used as a metric to rate or assess the procedure of intuitive
interaction according to Naumann et al.

In [62], Hurtienne mentions the notion of intuitive use “as a sub-concept of usability
with a strong focus on the mental demands in using technology” and subsequently
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emphasizes the importance of the mental load for the term intuitive use. This
leads to a slightly altered definition compared to Naumann et al. : “[. . . ] intuitive
use is defined as the extent to which a product can be used by subconsciously applying
prior knowledge, resulting in an effective and satisfying interaction using a minimum of
cognitive resources”.

2.1.6. Augmented reality

Milgram et al. were the first to define a taxonomy of Mixed Reality (MR) visual
displays. They introduce the idea of a virtuality continuum that spans between
two extrema: the real environment and the virtual environment (see Figure 2.1). A
MR environment is defined as “one in which real world and virtual world objects are
presented together within a single display” [121].

Carmigniani et al. build upon the work of Milgram and define AR as “a real-time
direct or indirect view of a physical real-world environment that has been enhanced/aug-
mented by adding virtual computer-generated information to it” [19]. Contrary to Virtual
Reality (VR), which puts the user into a fully synthetic world without a glimpse of
their real surroundings, AR aims to enhance the real environment of the user by
adding augmentations such as virtual objects or cues. These augmentations can
refer to different senses besides vision, like smell, touch and hearing.

According to [19], three main modalities for AR-displays can be distinguished:

1. Head-Mounted Displays (HMDs) are attached to the users head, for example
in the form of glasses or a helmet, and overlay virtual images over their
perception of the real world. Two main concepts for HMDs are

a) video-see-through: The user perceives the world via displays in front
if their eyes that show a live (stereoscopic) video stream, taken from
their point of view. The augmentations are directly superimposed onto
the video stream. This allows for optimal synchronization between the
augmentations and the perception of the world, but has long suffered
from low resolution of the displays and the technical effort in terms of
necessary cameras and computation.

b) optical-see-through: Virtual images are superimposed over the users own
view of the physical world, e.g. by using half-silver mirror technology.
This allows for an optimal perception of the real world, but can quickly
lead to jitter if the augmentations lag behind the real world.

2. Handheld Displays also follow the video-see-through concept as they capture
the environment via built-in camera and add augmentations to the live
video stream that is shown on their display. Depending on the application,
they often employ additional sensors such as GPS, compass and gyroscopes.
Prime examples of HMDs are smartphones and tablet PCs.
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Mixed Reality (MR)

Augmented
Virtuality (AV)

Real Environment Augmented
Reality (AR)

Virtual
Environment

Figure 2.1.: Virtuality Continuum accoding to Milgram: Augmented Reality (AR)
and Augmented Virtuality are both subsets of Mixed Reality (MR), in
between the real and virtual world [121].

3. SAR means that graphical information is directly displayed onto physical
objects without the need for users to wear or carry an AR-device. This
requires to integrate the according technology, such as projection systems,
into the environment. The benefit of this modality is that SAR is visible for
multiple users at the same time as they do not need a special device each.
Similar to HMDs, SAR can be further separated into different approaches:

a) video-see-through: Screen-based SAR-systems that are similar in concept
to the corresponding HMD approach. A drawback of this method is
that it is completely stationary.

b) optical-see-through: SAR-systems that employ spatial optical combiners,
like mirror beam splitters or transparent screens to superimpose aug-
mentations. Like video-see-through systems, these are stationary and
offer one major direction of view; in addition, their position has to be
carefully calibrated in order to provide accurate overlays.

c) direct augmentation: Projector-based spatial displays that project the
augmentation directly onto the surface of an object. These systems offer
a seamless augmentation and allow for multiple simultaneous users
from different angles of view. A disadvantage is that projections are by
their nature prone to occlusions, i.e. shadows being caused by persons
or objects moving between the projector and the augmented surface.

In addition to these AR modalities, the MR modality Screen-based Mixed Reality
denotes virtual augmentations onto live video streams, presented on a fixed
monitor without necessary registration to the environment.

Portable modalities for AR such as HMDs and handheld displays can also benefit
from external information about their location, in addition to their integrated
sensors. This information can be provided in an inside-out way, for example by
fitting a room with easily trackable AR-markers at known locations, based on
which the device can infer its position. In contrast, the outside-in approach is to
actively track the device, e.g. using an external marker-based tracking system that
directly provides the location of the device.
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2.2. Technologies

2.2.1. Surgical robot systems

2.2.1.1. Main concepts

In [60], Hoeckelmann et al. give an extensive overview of surgical robot systems
and their capabilities. They distinguish between two fundamental concepts in
robot-assisted surgery:

1. Teleoperated systems: The surgical robot is controlled by the surgeon from an
operating console which is usually located in the OR.

2. Image-guided systems: The surgical robot executes a preoperatively defined
surgical plan, based on intraoperative geometric information acquired by a
navigation system or other tracking system.

An additional control modality is hands-on guidance: The surgeon manually guides
the robot by hand contact to move the surgical instrument attached to the robot
into the desired position. Hands-on guidance can be used with both concepts, e.g.
for initial positioning of the robotic instruments before the procedure starts.

2.2.1.2. da VinciTM

The most prominent example of a teleoperated surgical robot is the da VinciTM sys-
tem by Intuitive Surgical [48]. With 3 477 installations worldwide and over 570 000
procedures in 2015 (as reported by Intuitive Surgical [72]), it clearly dominates the
market for general MIRS.

Since the first version of the da VinciTM, which was cleared by FDA in 2000, there
have been several iterations of the system. While each generation introduced
changes in the hardware and software capabilities, the basic concept of the robot
system has remained unchanged since its first iteration. As a teleoperated system,
it features a surgeon console, from which the robot is controlled, and a movable
patient cart with three or four robotic arms (see Figure 2.2), to which the instru-
ments and camera are attached. Before the start of an intervention, a so called
docking procedure is performed during which the patient cart is positioned close to
the OR table and the arms are manually positioned so that their mechanical pivot
points correspond to the trocar positions.

The da VinciTMsystem is a strictly teleoperated system that does not include any
sensors that allow to collect information about its environment. Especially, it does
not offer force-torque sensors in the robotic arms or any other modalities that can
perceive the proximity of surgical personnel.

As the da VinciTM has been the de facto standard for MIRS for over 15 years,
most studies on the effects of MIRS evaluate interventions performed with the da
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Figure 2.2.: Patient cart of the da VinciTM with three arms for endoscopic instru-
ments and one arm for the endoscopic camera. Left: da Vinci R© SiTM

(2009) [70], right: da Vinci R© XiTM (2014) [71]. c©2016 Intuitive Surgical,
Inc.

VinciTM. Concerning the robot system, an often-mentioned drawback is the possi-
bility of collisions between the external parts of the robot arms [118]. Goldstraw
et al. name this as a “serious problem” as it can lead to prolonged intervention
times due to necessary re-docking of the robot [42]. Another disadvantage is
the sheer size and weight of the da VinciTM. Apart from necessitating structural
enhancements for some OR to support the robot’s weight, it can also literally make
the intervention revolve around the robot [42], as some clinics have found that
moving the OR table around the robot is in fact more practical than moving the
robot to the correct location at the OR table [118].

2.2.1.3. MiroSurge

The MiroSurge system was developed by the DLR as “a versatile system for research
in endoscopic surgery” [50]. Similar to the da VinciTM, it is also mainly targeted at
teleoperated usage for MIRS. However, the design of the MiroSurge robot system
is very different from the da Vinci: Instead of a monolithic structure that holds the
robotic arms, MiroSurge consists of multiple small, independent robotic arms that
are directly attached to the OR table (see Figure 2.3).

The lightweight MIRO arms have been specifically designed with the goal of
operating in an unstructured environment and interacting with humans. They
feature integrated joint torque sensors that allow for sensing external forces, which
enables the system to react to its environment, e.g. by detecting collisions and
offering compliant control for hands-on guidance [179].
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Figure 2.3.: The MiroSurge system with three lightweight MIRO arms that are
directly attached to an OR table [37].

To aid the OR personnel in the correct setup of the robot system, an additional
tool called VR-Map has been developed that can be mounted to a MIRO arm
and integrates a 3D scanning system and a laser projector [94]. The intended
usage is to first register the patient body by scanning its surface, followed by a
re-optimization of the planned setup. The resulting trocar point positions and
robot positions alongside the OR table are then projected onto the patient and
the OR table. However, no intraoperative projections can be realized using this
system, as it is used only preoperatively and replaced by a surgical instrument
before the start of the intervention.

2.2.1.4. Further systems

There are numerous research systems as well as systems that are currently being
developed for commercialization. In the following, a selection of such systems that
are targeted at MIRS is presented very shortly. For further reference, an exhaustive
list can be found in [60]. For the purpose of this work, the listed systems are
categorized into two groups based on how the robotic arms are positioned at the
OR table, either on stand-alone carts or directly attached to the OR table.

Systems using stand-alone carts:

• Two Italian systems are in the process of being commercialized: The ALF-X,
developed by Sofar S.p.A., and the Surgenius by Surgica Robotica S.p.A.. Both
systems feature multiple independent robotic arms that are each mounted
on dedicated carts. The ALF-X aims to lessen the impact of the robot system
on the available space around the situs by extending the arm lengths and
height so that the carts can be positioned farther away from the OR table
(see Figure 2.4). It has already completed first human applications in a Phase
II study [32] and was acquired by TransEnterix, USA, in September 2015.
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Figure 2.4.: Upcoming surgical robot systems with different concepts. left: The
ALF-X system features extendable stand-alone carts that are designed
to free up space around the situs [165]). right: The SOFIE system is
directly attached to the OR table and requires no floor space [30].

• The BIT system (to be renamed in Cordoba) makes use of standard industrial
UR5 robots by Universal Robots that are mounted onto a specific cart each,
which also houses an industrial PC. Connection between these PCs control-
ling the robots and the surgeon console is established via Robot Operating
System (ROS) [8].

• The Bitrack was developed at the Institute for Bioengineering of Barcelona and
is now in the process of being commercialized by Rob Surgical S.L.. It consists
of one tall cart that holds two robotic arms and was designed for minimal
space requirements.

Systems with direct attachment of the robotic arms to the OR table:

• The SOFIE system was developed at the Eindhoven University of Technology
and focuses on force feedback in multiple dimensions [186]. It is an example
for a research system that uses small robotic arms which are not mounted on
stand-alone carts. Rather, they are attached to a single frame which is in turn
attached to the the OR table (see Figure 2.4).

• The Raven II robot from Applied Dexterity is an open source surgical research
robot system that is being used in multiple universities worldwide [53]. It
employs small, cable-driven robotic arms that are mounted onto the OR
table.

• The Robin Heart robot is developed at the Foundation for Cardiac Surgery Devel-
opment since 2000 and is targeted towards minimally invasive cardiovascular
interventions [110]. Multiple small robotic arms that have specifically been
designed for a small footprint are directly mounted to the OR table.

Each of these systems focuses either on a specific medical target application in
the domain of MIRS, e.g. cardiovascular abdominal interventions, or on a more
technical research direction, such as providing force feedback or enabling an open
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source research platform. However, none of these systems includes any sensors
that allow to perceive and react to the immediate surroundings of the robot.

2.2.1.5. GestoNurse

A perioperative nurse, often called scrub nurse, is responsible e.g. for preparing
the surgical instruments before an intervention and for assisting the surgeon
intraoperatively. On demand, e.g. spoken or via gesture, scrub nurses need
to quickly pass the surgeon the correct instrument and clean and place it back
afterwards. They also have to count all instruments as well as sponges and other
tools after surgery to make sure that none was left in the situs.

Purdue University, USA, developed the GestoNurse as a robotic scrub nurse with
a multimodal user interface. By speech or gesture command, the surgeon can
request instruments which are handed over by the robot. Contrary to the systems
mentioned above, the GestoNurse is equipped with sensing capabilities, e.g. in
the form of 2D/3D cameras and microphones, to detect and interpret commands
as well as detect the surgeon’s hand position for safe collaboration. Jacob et al.
report a command recognition accuracy of over 97% and time reductions using
the multimodal interface over speech-only of 14.9% in a mock-up intervention [81,
82].

2.2.2. Range Imaging

There exist various sensing principles and systems for acquiring range images.
The following sections give an overview of the conceptual as well as technical
background of such systems, focusing on range imaging cameras with active
illumination.

2.2.2.1. Background

Range Imaging is the process of acquiring three-dimensional information of a sur-
face or a scene from a certain viewpoint. A range image is a 2D image in which
the pixel value at each coordinate corresponds to the distance to the object at that
coordinate from the perspective of the viewpoint. Combined with the intrinsic
parameters of the range imaging device, range images can be used to reconstruct
a point cloud that consists of multiple 3D points where each point corresponds to
one pixel in the range image.
A point cloud reconstructed from a single range image technically represents a
2.5D model: While it contains 3D information, this information is only available
from a single viewpoint, in a viewer-centered coordinate frame. In contrast, a 3D
model representation would use an object-centered coordinate frame and contain
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volumetric information and surface primitives for the whole model [112]. How-
ever, 3D models can be created by using range images acquired from multiple
viewpoints.
For easier reading, range imaging devices will be referred to as 3D cameras through-
out this thesis. The range image itself will also be referred to as a distance map, if
each pixel value corresponds to the distance between the camera sensor and the
scene geometry, or as a depth map, if each pixel value corresponds to the distance
between the plane of the camera sensor and the scene geometry.

2.2.2.2. Structured Light

Sensing principle The basic principle of structured light consists of projecting a
light pattern into a scene which is then captured by a camera. Based on the known
geometry (“structure”) of the projected light pattern and the known spatial relation
between camera and projector, a 3D view of the scene can be reconstructed. Many
implementations of structured light systems exist, often consisting of a standalone
projector and a traditional RGB camera, that use different algorithms for calibration
and acquisition of 3D information.

Structured light measurement systems rapidly gained wide-spread adoption in
robotics research when the first version of the Microsoft Kinect was brought to
market [51]. It contains a complete structured light system in a small housing
which offered unprecedented 3D sensing capabilities in this price range. In the
following, the structured light sensing principle will be further detailed, mainly
based on the Kinect implementation.

Infrared laser projector RGB sensor

Infrared sensor

Figure 2.5.: Optical components of the Microsoft Kinect for XBox 360.

The Kinect is based on a proprietary structured light system by PrimeSense that
has been licensed by Microsoft. It consists of three optical components as depicted
in Figure 2.5:

• Infrared laser projector: A static speckle pattern is projected into the scene
using a 780 nm infrared laser diode combined with a custom holographic
diffraction grating. The pattern is constructed based on spatial-multiplexing
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light coding: As each point in the projected pattern needs to be robustly de-
tectable (“coded”) and no information can be encoded by temporal changes,
each point has a unique spatial neighborhood which is used as its spatial
multiplexing window support. More specifically, the projected pattern features
an uncorrelated distribution across each row [23]. The pattern is depicted in
Figure 2.6.

• Infrared sensor: A grayscale sensor combined with an Infrared (IR)-pass-filter
is used in combination with an astigmatic lens with different focal lengths
for x-axis and y-axis to acquire an infrared image of the scene. The different
focal lengths result in different shapes of the detected points of the projected
pattern, depending on their distance to the camera, and thereby provide
additional clues to distinguish near and far points.

• RGB sensor: An off-the-shelf RGB sensor provides a 2D color image. Using
the extrinsic calibration between the IR sensor and the RGB sensor, the color
information can be mapped onto the acquired depth data.

To reconstruct a 3D representation of the scene, correspondences between the
emitted IR light pattern and the acquired IR image are determined. Taking into
account additional effects such as perspective distortion, the disparity d at each
pixel is calculated. According to Khoshelman et al. [88], in PrimeSense devices
the disparity is stored as a (de)normalized 11 bit integer d′ with supposedly linear
normalization coefficients m and n such that d′ = (d−n)/m. One bit of d′ is further
reserved to encode invalid pixels where no disparity could be determined, so
210 = 1 024 discrete values remain for encoding the disparity.
Taking into account the focal length f of the camera as well as the base length b
between the optical centers of the projector and the camera, the depth resolution
∆z for a given disparity d′ can be calculated as

∆z(d′) = Z(d′)− Z(d′ − 1), (2.1)

which leads to the following formula for calculating the depth error at a certain
distance Z:

∆z = (
m

fb
Z2). (2.2)

Based on their calibration results, Khoshelham et al. determine the factor |m
fb
| to

2.85 10−5. Using Equation 2.2, this results in a maximal depth resolution of 2.8 mm,
25.7 mm and 71.3 mm at respective distances of 1 m, 3 m and 5 m.

While the Kinect is manufactured as a low-cost consumer device, Martinez and
Stiefelhagen investigate the depth reconstruction pipeline of the integrated PS1080
chip with the focus on determining potential improvements on the depth recon-
struction [113]. By estimating depth at the projected points only and performing
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no interpolation between these points, they report achieving a higher depth accu-
racy than the original algorithm. The drawbacks of this reconstruction pipeline are
a lower lateral resolution of about 28k points and a reduced frame rate of 1.75 fps
compared to the original algorithms [114].

Characteristics Structured light systems such as the Kinect exhibit special char-
acteristics:

• Depth resolution: The depth reconstruction error is a quadratic function of the
measured distance. This leads to an increasing uncertainty in measurements
at larger distances which impedes e.g. reconstruction of angled surfaces as
they are “projected” onto discrete distance values.

• Sensitivity to external light: Structured light range imaging depends on detect-
ing a projected pattern. Strong external illumination can lower the contrast of
the detected speckle pattern which leads to an increasing number of invalid
distance measurements. For the Kinect, experiments have shown that mea-
surement errors occur when using external light sources with an irradiance
of 6− 7W/m2 [102]. As sunlight has an irradiance of about 75W/m2 in the
relevant wavelengths between 800 nm and 900 nm, this negatively influences
or completely prevents the usage of the Kinect in environments with direct
sunlight, e.g. in outdoor applications or in rooms with large windows.

• Influence by scene properties: Color and reflectivity inhomogeneities of materi-
als in the scene can influence the perceived contrast and detection quality
of the projected structured light pattern, leading to incorrect or missing
depth reconstruction [23]. Furthermore, the geometry of the scene plays an
important role as heavily slanted surfaces introduce a strong perspective
distortion of the structured light pattern as seen by the IR sensor. This pre-
vents the correct determination of disparities and results in failures in depth
reconstruction.

• Depth discontinuities and occlusions: Due to the baseline between the IR pro-
jector and the IR sensor, objects closer to the camera occlude points farther
away from the camera, making them invisible to either the IR projector or
the IR sensor. This results in missing depth estimations in the background
of a scene at the boundaries of foreground objects. In the case of the Kinect,
heuristics are in place to attempt reconstruction of this missing informa-
tion. However, these can in turn lead to misalignments between real and
estimated depth discontinuities [23].

Camera models The original technology behind the Kinect was also licensed
to Asus and subsequently put on the market as X-tion Pro and X-tion Pro Live.
Regarding the 3D sensing capabilities, both cameras are identical to the Kinect. In
November 2013, PrimeSense was acquired by Apple, USA, which subsequently led
to the discontinuation of the X-tion product line.
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Figure 2.6.: Examples for structured light patterns. Left: Microsoft Kinect projects
a static pattern that contains enough detail to uniquely identify the
spatial neighborhood of each point [23]. right: Intel RealSense F200
projects multiple patterns like the depicted one. Point identification is
possible only due to temporal information [177].

Orbbec, USA, produces the Astra cameras, which are based on structured light
technology developed by Orbbec that offers a lateral resolution of up to 1 280×
1 024 px. Contrary to PrimeSense-based devices, the Astra cameras offer an SDK
that allows to control the camera on a technical level, e.g. adjusting the IR sensor
gain to change the sensing range and controlling the laser projection to enable
crosstalk-free temporal multiplexing of multiple cameras. In late 2015, the new
Persee camera was announced that will integrate a host computer in the camera
housing at a similar size to e.g. the Kinect. It features a quad core ARM processor
at up to 1.8 GHz with a dedicated GPU as well as an Ethernet port and wifi
connectivity, thereby facilitating the easy distribution of multiple cameras in a
room [139].

In 2015, Intel introduced two models of its RealSense camera family as development
kits: The F200 is a close-range cameras designed for detecting a user’ s head and
hands, the R200 is a medium-range camera aimed at environmental sensing.
Both provide a lateral resolution of 640 × 480 px at up to 60 fps. While the F200
features the same types of components as the Kinect (IR projector, IR sensor, RGB
sensor), it employs a temporal-multiplexing projection approach based on a MEMS
micro-mirror by STMicroelectronics, Switzerland [167]. The amount of patterns
used per frame can be configured and influences achievable frame rate as well
as accuracy [69]. For illustration of the difference to static patterns, one of the
patterns is depicted in Figure 2.6. In contrast to the F200, the R200 features two IR
cameras and employs a stereoscopic scene reconstruction approach based on the
disparity between both IR cameras [22].
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2.2.2.3. Time-of-Flight

Sensing principle Time-of-Flight (ToF) cameras acquire distance information
by sending out (near-)infrared light and measuring the time delay until the light
reflected by the scene is being detected by the according pixel on the sensor (see
Figure 2.7). As ToF sensors consist of an array of such pixels that are read out in
parallel, ToF cameras capture the full scene at the same time, instead of scanning it
line-by-line like e.g. laser scanners.

Figure 2.7.: Illustration of the ToF measurement principle. The camera emits mod-
ulated infrared light (left), which is reflected by objects in the scene
(center). Distance to the object is calculated based on the phase shift
between emitted and reflected light (right).

This work mainly uses ToF cameras with Photonic Mixer Device (PMD) sensors by
pmdtechnologies, Germany. Therefore, in the following, the amplitude-modulated
ToF measurement principle is described based on the technical implementation
used in PMD sensors [156].

At each pixel of the PMD-sensor, the time delay between emission and detection
of the reflected light directly corresponds to the phase difference ∆φ between the
emitted and reflected infrared signal. ∆φ can be calculated based on the relation
of four phase images, acquired using electric charge values controlled by four
phase control signals with 90◦ phase delay between each other, that determine the
collection of electrons from the received IR light (see [54] for further details).

With the known speed of light c and the signal modulation frequency f , the
distance d to the reflecting object can be calculated as

d =
c

2f

∆φ

2π
. (2.3)

On industrial-grade ToF cameras, multiple adjustable settings influence the quality
and performance of the distance measurements:

• Integration time: The electric charges used to calculate the phase difference
are integrated over a fixed period of time. Increasing this integration time
leads to a better Signal-to-Noise-Ratio (SNR), but decreases the achievable
maximum frame rate as less measurements can be taken per time interval.
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• Frame rate: Depending on the camera model and cooling solution, thermal
constraints can further restrict the available combinations of integration time
and frame rate [14].

• Modulation frequency: Due to the four-charge implementation for calculating
the phase difference, the phase φ of the modulation signal can only be
measured in the range between [0, 2π) (see [54] for further details). Therefore,
the maximum distance dmax which can be reliably measured is

dmax =
c

2f
. (2.4)

For a more intuitive understanding, this means that light can travel at most
one full wavelength from the camera to an object and back before its phase
becomes indistinguishable from the next wave cycle. Therefore, dmax is
equal to half the wavelength λmod of the modulated light. For common
modulation frequencies between 20 MHz and 30 MHz, this corresponds to
an unambiguity range of up to ≈ 7.5 m and ≈ 5 m, respectively.

Figure 2.8.: Flying pixel phenomenon visible as color-coded side view of scene
captured by a ceiling-mounted [pmd]vision CamCube 2.0. Left: Unfil-
tered point cloud exhibiting a significant amount of flying pixels; right:
Filtered point cloud.

Characteristics Compared to 2D grayscale or RGB cameras, ToF cameras offer
only a low lateral resolution (see Table 2.2). As a consequence of their measurement
principle, they furthermore exhibit special characteristics that have to be taken
into account:

• Signal interference: If multiple ToF cameras with the same illumination param-
eters (i.e. modulation frequency and IR wavelength) are operated in the same
environment, reflections of light emitted by one camera are also received by
other cameras. This crosstalk results in heavily distorted measurements and
therefore has to be carefully avoided for multi ToF camera systems.
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• Flying pixels: Due to the low lateral resolution of ToF cameras, depth inhomo-
geneities, which occur for example at the boundaries of objects, often lead
to incorrect measurements as light reflected by an object and light reflected
by the background are both integrated in the same pixel. This results in
an incorrectly measured distance value that is between the distances of the
object and the background. This phenomenon is commonly referred to as
flying pixels ([18, 104]) and is depicted in Figure 2.8.

• Multi-path reflections: ToF distance calculation is based on the assumption
that the emitted light is reflected directly back to the sensor. If there are
multiple reflections instead, e.g. in the case of a sharp inside corner junction
of a wall, the distance is incorrectly measured.

• Motion artifacts: The four phase images, which are used in PMD sensors to
sample the autocorrelation function and calculate the phase shift, are taken
successively. If motion occurs between any of these sample images, this
leads to incorrect distance values at object boundaries [93].

• Intensity-related distance errors: Especially with early generations of PMD-
sensor based ToF cameras, the reflectivity of the object surface influences
the distance measurement due to physical effects of both the semiconductor
detector and the camera electronics [93].

• Temperature drift: Due to the high responsivity of semiconductor materials to
temperature changes, temperature variations within ToF cameras can affect
the measurement accuracy. According to [148], temperature changes due to
internal warming up of ToF cameras can account for maximum variations
of about 120 mm for the measured mean distance. Operating the camera
for a device-dependent warm up period of up to 40 min before conducting
measurements can bypass these effects.

• Multi frequency acquisition: In order to increase the unambiguity range, mul-
tiple depth acquisitions with different modulation frequencies can be com-
bined. This decreases the achievable frame rate and disables the use of
frequency multiplexing schemes, as each camera utilizes multiple frequen-
cies.

Further, ToF cameras capture the amplitude of the received signal at each pixel. It
is used as an indicator of the validity and quality of the according measurement
and internally evaluated in the camera. For industrial-grade ToF cameras, the
amplitude value per pixel is usually accessible as an amplitude map while it is not
accessible with consumer-grade ToF cameras.

Camera and sensor models For a number of years, ToF cameras have been
targeted solely at industrial use due to a number of reasons including technical
limitations, high price due to low volume manufacturing and limited lateral
resolution. Common examples for older and current stand-alone industrial ToF
camera models with PMD sensors are the [pmd]vision R© CamCube 2 and 3 as
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well as the [pmd]vision R© S3, both by pmdtechnologies, and the Argos3D P100 by
Bluetechnix GmbH, Austria. The well-known SwissRanger 4x00 series by MESA
Imaging AG, Switzerland, has been discontinued as of November 2015 after the
acquisition of MESA Imaging AG by Heptagon, Singapore [58].

Texas Instruments (TI), USA, offers different ToF sensors with standard specifica-
tions. These are employed e.g. in the short-range, consumer-grade web camera
Senz3D by Creative, Singapore, and the (discontinued) short-range DepthSense
325 by Belgian company SoftKinect, which has been acquired by Sony in October
2015.

ESPROS Photonics AG, Switzerland, rolled out the epc660 System on a Chip (SoC)
in 2015. At a lateral resolution of 320× 240 px, it features modulation frequencies
between 0.625 MHz and 20 MHz, which correspond to unambiguity ranges of up
to 240 m. The epc660 provides so-called “full 3D TOF frames”, that are combined
from four consecutive phase images called “Differential Correlation Samples”
(DCS), at a rate of 65.5 fps. As a minimum of two DCS per frame is necessary
for distance calculation, the frame rate can be doubled to 131 fps. The frame rate
is limited by the read-out bandwidth, so reducing the Region of Interest (ROI)
further increases the frame rate proportionally to the reduction factor up to a
maximum full 3D TOF frame rate of 1 048 fps at a ROI of 1

16
of the full resolution.

In addition to the image sensor, four temperature sensors are integrated to be used
for drift compensation [31].

Microsoft switched the range imaging method for their consumer-grade Kinect
cameras from structured light to ToF with the introduction of the second genera-
tion Kinect. While Microsoft officially names the first generation “Kinect for XBox
360” and the second version “Kinect for XBox One”, there exist various naming
schemes in different publications. In the following, the cameras will be referred to
as Kinect v1 and Kinect v2 for the sake of simplicity.
The Kinect v2 provides depth information at 30 fps with a lateral depth resolu-
tion of 512 × 424 px, which is comparatively high for a ToF camera. It employs
multi-frequency acquisition using three widely spread modulation frequencies
of approx. 16 MHz, 80 MHz and 120 MHz [18] to increase the non-ambiguity range
up to 18.74 m by using frequency-based phase unwrapping. According to a joint
paper by Microsoft Research and Technische Universität München (TUM) [168],
the Kinect v2 internally works with an acquisition frequency of 300 Hz. At the
beginning of each measurement, internally nine frames are acquired in rapid
succession at different combinations of three frequencies of laser illumination and
the three modulation frequencies. These are followed by a tenth infrared frame
captured without active illumination which is used to correct for external lighting
effects.
According to Breuer et al. [18], the depth resolution of the Kinect v2 is compa-
rable to that of its predecessor both in quantity and quality as it also decreases
quadratically with the distance. Furthermore, they note that the Kinect v2 has a
temperature drift which they evaluated to approx. 2.5 cm in the first 25 minutes of
operating time.
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odos imaging, Scotland, manufactures the Real.iZTM OI-VS-1000 that operates with
pulsed illumination instead of amplitude modulation, i.e. it directly measures the
time delay of a non-modulated light pulse instead of calculating the delay based
on the phase shift of a continuous modulated signal. The camera offers a high
resolution of 1 280× 1 024 px at up to 30 fps with the additional option of a high-
speed mode with up to 450 fps that can only be stored internally. As the emitted
light is not modulated, multiple cameras can only be used in a time-multiplexing
setup [136].

Since December 2015, multiple large companies have announced new generations
of ToF cameras and sensors:

• pmdtechnologies and Infineon, Germany, announced the new REAL3TM im-
age sensor family with a resolution between 19 k and 100 k pixels. It is
advertised as improving the photo-sensitivity by a factor of two compared
to the previous sensor generation due to optimized micro-lens technology.
Acquisition speed is given as up to 100 fps using modulation frequencies of
up to 100 MHz [67].

• TI announced the new OPT8320 SoC, that, according to its specifications, far
surpasses currently available ToF sensors in terms of acquisition speed. At a
relatively low resolution of 80× 60 px, it offers a frame rate of up to 1 000 fps,
which is in turn based on an internal raw frame rate of to 4 000 fps. The
modulation frequency is specified as 10 MHz to 100 MHz from which a native
unambiguity range of about 15 m to 1.5 m can be calculated. Additional
information such as auxiliary depth data representing the amplitude of the
received signal are available [176].

• In January 2016, Heptagon announced the TARO 3DRangerTM as successor
to the discontinued SwissRanger series. While no technical improvements
in terms of resolution or frame rate are advertised, an optional wireless
interface will be available that allows for connectivity via wifi, bluetooth and
zigbee [57].

• Basler, Germany, announced their new engineering sample of a ToF camera
that is expected to be available in 2017. It features a high lateral resolution of
640× 480 px at a rather low frequency of 15 fps [6].

Further technical information about specifications of a selection of the aforemen-
tioned ToF cameras can be found in Table 2.2.

2.2.2.4. Further sensing principles and research

In addition to structured light and ToF, there are several other technologies avail-
able that offer 3D sensing. As they are currently not suitable and/or available for
usage in medical scenarios, they will only be described shortly.
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PMD S3 CamCube
2.0

Argos 3D
P100

Mesa SR
4000

Kinect v1 Kinect v2

Lateral reso-
lution (px)

64× 48 204× 204 160× 120 176× 144 640× 480 512× 424

Field of view 30◦ × 40◦ 40◦ × 40◦ 90◦ × 90◦ 69◦ × 56◦ 43◦ × 57◦ 70◦ × 60◦

IR wave-
length (nm)

850 870 850 850 830 860

Connection Ethernet USB 2.0 USB 2.0 USB 2.0 /
Ethernet

USB 2.0 USB 3.0

Frame rate
(fps)

up to 20 up to 25 up to 160 up to 54 30 (fix) 30 (fix)

Operating
range (m)

0.2− 6.0 0.2− 7.0 0.1− 3.0 0.3− 5.0 0.4− 4.5 0.5− 4.5

Modulation
frequency
(MHz)

20.4, 20.6,
23.0

18.0, 19.0,
20.0, 21.0

5−30 (ad-
justable)

29 − 31
(adjustable)

– 10 − 130
(non-adjustable)

Table 2.2.: Technical specifications for different 3D cameras [14, 119, 142]

Plenoptic cameras Plenoptic or light field cameras offer monocular, passive 3D
sensing and require no artificial illumination. Contrary to conventional camera
systems, where a single lens is used to focus the incoming rays of light so they
converge on one pixel on the sensor, plenoptic cameras usually employ an array
of microlenses, often placed between the main lens and the image sensor, to split
incoming light by angle of its direction. Contrary to e.g. ToF cameras, expen-
sive computation is necessary for reconstruction of depth information. Therefore
plenoptic cameras usually employ highly parallel algorithms on according hard-
ware such as Graphics Processing Units (GPUs) or Field Programmable Gate
Arrays (FPGA). As both angular and positional structure of incoming light rays
have to be recorded simultaneously, the achievable lateral resolution is smaller
than the native resolution of the sensor [146, 158].

Plenoptic cameras following this sensing principle are commercially available
from the companies Lytro, USA, and Raytrix, Germany. The first generation of
Lytro cameras is reported to have a sensing range of approx. 210 mm with a depth
reconstruction error of 30 mm under laboratory conditions [153]. The second
generation Lytro Illum is a handheld camera focused on the consumer market with
the application of changing focus in a picture after it was taken. While it offers a 2D
export resolution of 2 450× 1 634 px, acquisition speed is limited to 3 fps [108]. In
April 2016, Lytro announced that it would not develop its consumer camera lineup
any further and focus on light-field capturing for business customers instead. In
contrast, Raytrix offers various models of its R series targeted at industrial and
scientific use. Depending on the model, they offer effective resolutions between
1 megapixel at 180 fps and 10 megapixel at 7 fps and support industrial standard
lens mounts. An analysis of a first generation Lytro camera and the Raytrix R5 are
published in [41] and [197], respectively.
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Venkataraman et al. developed a different approach to a plenoptic camera, the
so-called “array camera” PiCam. Rather than using one image sensor, it consists of
an array of separate, optically isolated image sensors that are sensitive to a single
spectral color each. Using a 4×4 array of sensors with a resolution of 1 000×750 px
each, they derive an 8 megapixel depth image at a camera package height of only
3.5 mm. However, the error of estimated depth increases with increasing distance
from 1.1 % at 0.2 m to 38.9 % at a distance of 5 m [187].

Shape from Polarization (SfP) Photon-X, USA, have developed a proprietary,
passive 3D volumetric imaging technology called Spatial Phase Imaging (SPI) that
simultaneously captures color, 3D coordinates and 3D shape (e.g. normals) per
pixel. According to [5], it uses a single, enhanced camera and requires no artificial
illumination or coherent light as it operates based on the spatial phase properties
of any light source, including ambient light. Incoming light is broken down into
spatial phases with different orientations, out of which a phase difference between
adjacent pixels can be calculated. Based on the known Field of View (FoV) and
pixel size, depth information can then be geometrically reconstructed up to a
depth resolution that directly depends on the lateral resolution upon the object.
Photon-X claims that SPI scales with the optical system used and can therefore be
arbitrarily configured in terms of resolution, sensing range and frame rate. Since
Photon-X has carried out mostly military and defense work, no further details are
publicly available.

Kadambi et al. have proposed to combine coarse depth maps obtained by ToF
cameras with SfP cues in order to improve the resulting depth reconstruction [84].
Using a Kinect v2 and a DSLR with linear polarizer, they were able to recover
features in the size of 300 µm from short distances. However, their method requires
three consecutive images throughout which the scene cannot change, takes about
one minute for full depth reconstruction and has specific requirements for the
surface materials. Therefore, it is not yet applicable to real world scenarios.

Multi-Image sensing photoneo, Slovakia and ximea, Germany, reported to have
developed a laser-projection based 3D sensing technology called “Multi-Image
sensing” that can supposedly deliver motion-blur free 3D reconstruction and will
be available on the market in the PhoXi Cam++ in 2016. With a resolution of up
to 2.7 million pixels and up to 60 fps, it is advertised to feature a very high depth
accuracy of up to 50 µm at 1 m and 2σ [195].
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2.3. Applications

2.3.1. Surgical applications

2.3.1.1. Range imaging

In recent years, there was a growing interest in the application of range imaging
for health care purposes. While this is partially due to technological progress,
e.g. the availability of small and low-cost 3D cameras, there are several benefits
with regard to medical practice: Based on real-time dense measurements, range
imaging offers the possibility of touch-free interaction in sterile environments and
marker-free tracking which can save effort in setup.

Research on range imaging in surgical interventions can be categorized into three
main applications:

• Guidance in computer-assisted interventions, e.g. 3D laparoscopy, which is
detailed further in section 2.3.1.1.

• Monitoring of the OR, which is covered in the main part of this thesis.

• Touch-less interaction, which is discussed in section 2.3.1.1.

Bauer et al. present an overview of range imaging in the general domain of
health care, focusing on ToF-based research [7]. Some of their findings will be
summarized in the following.

Concerning the usage of ToF cameras for monitoring OR safety, they put forward
a set of requirements on both the characteristics of the cameras and their spatial
setup: Cameras need to offer a low latency with the exact timing dependent on
the movement speeds in the supervised scene. The accuracy of the whole system
depends on the accuracy of each single sensor, so the accuracy of the single sensors
has to be known and matched with the target application. For collision avoidance,
they suggest a safety margin in the centimeter range as motions cannot be stopped
instantaneously. In order to avoid or mitigate occlusions and provide redundancy,
a multi-camera setup is recommended. Work performed in the scope of this
thesis [125, 133] is cited as examples of such systems.

Further, Bauer et al. discuss current issues and limitations of range imaging in med-
ical applications. These include systematic errors, such as temperature-dependent
distance measurements and the flying pixel phenomenon, and possible (partial)
solutions such as a preoperative warm-up phase and a fix integration time to keep
the thermal conditions constant. If multiple cameras are to be used in the same
environment, a multiplexing scheme has to be devised to avoid cross-talk. While
these considerations are fairly generic and hold true for various domains, they
emphasize specific requirements for allowing a proper integration into clinical rou-
tine. These include the necessity of a simple and reliable process for (re)calibration
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of multi-camera systems as well as choosing a form-factor that can be used in e.g.
an OR setting without obstructing the personnel.

3D laparoscopy Lucidux, USA, is in the process of developing a 3D laparoscope
based on SPI technology, naming Intra-procedural Detection of Sub-Surface Can-
cer Nodules in Lung as an application [147]. In addition to 3D imaging for purely
visual purposes, i.e. better visualization, the product might also provide capabili-
ties for reconstruction of tissue properties. This is indicated by a patent that has
been filed in 2011 and generally describes a system and methods for measuring
mechanical properties of deformable materials. It explicitly names different medi-
cal applications that involve probing tissue for determining its internal properties
as well as minimally invasive surgery [55].

In [115], Herrera et al. present a prototype of a 3D laparoscope using SfP. They
extend a standard laparoscope shaft with a rotatable polarizer at the tip. Recon-
struction of the shape of the surface is performed based on three images acquired
with different polarizer orientations. For ex vivo experiments using lamb organs,
an angular reconstruction error of the surface normals below 15◦ is reported.

Richard Wolf, Germany, manufactured a prototype for a ToF-based 3D laparoscope
that offers depth information at a frame rate of 20 fps and a lateral resolution of
64 × 48 px [144, 145]. While it is not commercially available, the prototype has
been extended and used in several research projects [46, 92].

Touch free interaction During surgery, a surgeon often needs to review 2D or
3D pre- or intraoperative imaging data. This can be a cumbersome undertaking as
mouse and keyboard that are used to control the display of said imaging data are
in a non-sterile zone of the OR. Directing an assistant by voice to show the right
parts of the image on screen may not result in the optimal view that the surgeon
desires, especially for 3D data. If surgeons need direct hands-on control over the
images, they have to leave the sterile zone to browse the imaging data and then
spend additional time on re-sterilization, i.e. rescrubbing, before they can resume
the intervention.
Touch-free control of e.g. DICOM viewers in the OR is a modality that can help
surgeons overcome these delays as they can control the displaying of imaging
data directly from the sterile zone by themselves. Various works have therefore
focused on using e.g. the Kinect as an input device to enable such gesture-based
interaction (see e.g. [137]).

Karl Storz, Germany, offered a first commercial system for touch free control of
patient records under the name MI Report that used an infrared stereo camera
for hand segmentation and was based on research by Fraunhofer HHI [20]. An
evaluation carried out during 51 surgical interventions and a survey upon 25
surgeons showed high interest and positive results. However, the activation
gesture for starting touch-free control failed in several cases, resulting in 31 %
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failed attempts where usage was cancelled by the surgeon before the system was
activated [28].

As of 2015, the TedCube is available as a commercial solution by TedCas, Spain. It
is compatible with different gesture input devices such as Kinect v1, Kinect v2,
SoftKinetic DS325 and Leap Motion and acts as a bridge between the input device
and a DICOM viewer plugin for gesture control. The FDA has stated that the
TedCube itself is not considered a Medical Device and therefore does not need to
be certified as such [174].

2.3.1.2. Augmented Reality

There are various works on the application of different forms of AR in the OR. The
vast majority of these publications focuses on direct medical benefits of applying
AR, i.e. by assisting the surgeon with display of medical information [106]. In the
following, a short overview of related works and their specific AR-modality is
given, using the classification introduced in section 2.1.6.

Kersten-Oertel et al. review the state of the art of visualization in mixed reality
image-guided surgery. Concerning the display modality, they report that taking
into account all surgical domains, monitors have been used in 47 % of the analysed
works, followed by HMD (20 %), microscopes (16 %) and projectors (9 %). These
numbers vary by the respective surgical domain: In neurosurgery, microscopes
are used in 52 % of the analysed works; in endoscopic interventions, monitors are
used in 57 %; in maxillofacial surgery, projectors are the most used modality with
38 % [87].

While HMDs seem to be a preferred display modality according to these numbers,
Wen argues that they have several inherent drawbacks. These include limits to the
field of view of the surgeon, ergonomic limitations imposed by the headsets and
the lack of multiple observers. Furthermore, potential adverse effects of HMDs
are listed: separation of the surgeon from the medical scene due to indirect view,
need for manual registration and issues with tracking and timing synchronization
[190].

Eggers et al. study the usage of intraoperative AR in preclinical trials with a
HMD-based and a two-projector-based system [85]. They conclude that wearing
glasses for a whole intervention would be too cumbersome, but that see-through
concepts offer a higher flexibility as well as the possibility for stereoscopic AR.
Projection-based systems have the advantage of not requiring additional hardware
close to the surgeon and providing an augmentation which is visible to all of the
staff. In total, they find that both modalities complement each other, while the
“projector based system is more comfortable and integrates better into the surgical
workflow.” [29].
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HMDs Dickey et al. use the Google Glass R© as an optical-see-through HMD to
aid in inflatable penile prosthesis. As an interactive modality, a remote physician
could see the live video stream captured by the HMD and provide visual (and
auditive) information to the surgeon or trainee. The method received high ratings
in terms of usefulness and ease of navigation, but medium ratings concerning the
caused distraction in the OR [25].

The upcoming HoloLens by Microsoft, USA, is also an optical-see-through HMD.
Opposed to past and current embodiments of HMDs, it integrates a miniaturized
computer as well as multiple sensors that allow for both inside-out-tracking of the
HoloLens pose and user interactions based on gestures and gaze tracking [120].
This enables spatially stable AR overlays without the need for tethering to external
devices for either tracking or calculation of the AR overlays and could counter
some of the drawbacks listed by Wen and Eggers et al.. Medical companies such
as Stryker, USA, are partners for HoloLens pilot projects. However, a drawback
is the reportedly low FoV of the augmentations which is estimated to be about
30◦ × 17◦. At the time of this thesis, neither the exact FoV nor the existence or
nature of upcoming medical applications was confirmed.

In a recent review, Mitrasinovic et al. analyse the use of smart glasses in healthcare
based on 241 selected articles. They see great further potential, but also give
several current limitations such as “(. . . ) effects of divided attention and cognitive
tunneling, and spatial disorientation (. . . )”. They voice concerns about the “(. . . )
risk that the use of augmented reality may draw focus away from the operating field
(. . . )” [123].

Handheld Displays Rodas et al. present an intraoperative system for analysing
the scattered radiation by a robotized X-ray imaging device. The result is provided
as a reconstructed 3D scene view, augmented by the illustration of the radiation
per person, with the aim to make personnel aware of the radiation. To facilitate
the usage in the OR, they propose a tablet with markerless inside-out tracking for
visualization [107, 157].

Müller et al. propose using a tablet for intraoperative augmentation of preopera-
tively acquired patient anatomy in percutaneous interventions. Colored markers
are attached to the skin of the patient that are captured by the camera of an iPad.
The camera stream of the tablet is relayed via wifi to a stationary computer that
performs inside-out tracking of the tablet position relative to the patient, calculates
the augmentation overlay and streams the resulting images back to the tablet.
The approach was evaluated successfully with the drawback of a lack of depth
information of the augmentation [128].

SAR In 2001, Wörn and Hoppe were among the first to present a concept for a
surgical spatial AR system, consisting of a projector and two cameras, that targets
the transfer of surgical planning data into the OR. The patient is initially registered
using structured light, without the need for artificial screw markers, and then
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tracked using optical markers [194]. Marmulla et al. further develop the system
and use it in maxillofacial interventions to augment the face of a patient with
geometric planning data such as osteotomy lines as depicted in Figure 2.9. As the
concept does not require tracked instruments, the surgeon can use all available
surgical instruments to cut along the projected trajectory [111]. In a clinical study
with 10 patients, Krempien et al. demonstrate the applicability of such a system to
interstitial brachytherapy with a reported projection error of about 1 mm [96].

Tardif et al. present a concept and realization of a calibration-free projector-based
augmented reality system. Using structured light projection, they create a mapping
of pixel-to-pixel correspondences between the projector and a camera that desig-
nates the Point of View (POV) of the surgeon. Using this mapping, they pre-warp
the projected content such that its projection on the patient appears undistorted
from the surgeon’s POV [172]. As this concept is based on a static POV of the
surgeon and cannot project spatially dependent information (e.g. anatomy of the
patient) due to lack of registration, it is not applicable to a real surgical scenario.

Figure 2.9.: Examples of different applications of medical spatial augmented re-
ality. Left: Projection of preoperatively planned osteotomy lines onto
patient [111]; center: visualization of anatomical features [192]; right:
live annotation using a tracked probe [164].

Seo et al. propose a system concept that combines a projector with a camera and
a tracking system. After acquiring the patient’s surface using structured-light,
they offer the surgeon the possibility to draw markings on the patient’s skin using
not an ink pen, but a tracked probe whose tip trajectory is projected onto the
patient [164] as depicted in Figure 2.9.

Wen et al. also employ a direct augmentation system, consisting of a projector
and a stereo camera system, to enable direct projection of anatomical features on
the patient’s body and visualize a robot-assisted needle-insertion process [191].
In later works, they add a Kinect to allow for gesture-based interaction with the
projection [192] and gesture-based control of the needle-insertion robot. They
demonstrate successful control of the robot both in manual and in semi-automatic
mode and report clinically acceptable insertion errors of below 2 mm [193]. No
details are given as to how the robot’s position was determined in relation to the
patient and camera/projector system.
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Kocev et al. present a direct augmentation system that consists of a projector and
a Kinect and is targeted at touch-free interaction with imaging data. The Kinect
is used for detecting gesture input by a surgeon to control the projection of 3D
anatomical features on arbitrary surfaces. No registration of the projector to the
scene and/or the patient is performed [91].

Gavaghan et al. design a marker-tracked, handheld device that includes a projector
for direct spatial augmentation onto the liver in a tumor ablation procedure. Due
to the direct projection of anatomical structures and needle guidance information,
they report a positive evaluation, citing that the system creates an “immersive and
intuitive scene” [39, 40].

Zhang et al. present an optical-see-through SAR system and demonstrate its
applicability in a brain phantom experiment in which data acquired in a CT scan
is overlaid over the phantom. The augmentation is however only visible for one
person at a time as a fix point of view is required [198].

Figure 2.10.: Examples of different applications of medical mixed reality. Left:
Tablet-based intraoperative visualization of patient exposure to X-
ray [157]; center: 2D screen-based visual feedback of depth informa-
tion in needle biopsy [15]; right: screen-based overlay of anatomical
features onto video stream from laparoscopic camera [34].

Screen-based Mixed Reality One of the major use cases for computer-generated
overlays in surgery is the scenario of Minimally Invasive Surgery (MIS), where
the surgeon can see the intervention field inside the body only through the video
stream taken by the laparoscope. An extensive account of such works is given in
the PhD thesis of Feuerstein [34]. While many publications refer to this modality
as AR, using the classification by Milgram introduced in section 2.1.6 it is actu-
ally a class 1 MR display. In the following, a selection of of recent works that
employ Screen-based Mixed Reality in a surgical scenario is given. Examples of
the resulting graphical representations are depicted in Figure 2.10.

Bork et al. study the effects of using an AR overlay on a video stream in com-
bination with auditory features to guide users in the task of a simulated needle
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biopsy procedure. They report a high improvement in accuracy, albeit with a huge
increase of completion time for the task [15].

Habert et al. physically attach an Asus X-tion Pro Live camera to a C-arm so
that the camera views the patient through a mirror. Using a manual calibration
procedure, it is ensured that the camera’s FoV and center are aligned to those
of the X-ray source. X-ray images acquired by the C-arm can then be mapped
onto the 3D surface of the patient as captured by the camera, thereby offering the
surgeon an augmented view of the patient [49].

Navab et al. present a freehand Single-photon emission computed tomography (SPECT)
system in which a tracking system and a 2D camera both view the situs. A marker-
tracked handheld radiation counter is used to acquire data for a 3D reconstruction
of the target anatomy. For visualization, the reconstruction is overlaid onto the
patient and visualized in an AR view. The system has been commercialized and
has received FDA approval [131].

Lamata et al. give an overview of various projects on medical AR, including the pro-
cess applied and results obtained by the European research project ARIS*ER [101].

Dixon et al. investigate the effect of AR surgical navigation, in the form of contour
augmentations on the endoscopic camera image, on attention, efficiency and
accuracy of the surgeon. In cadaveric exercises with 50 participants, they report
that the group that had to look up the contours on an external monitor had a
significantly better recognition rate of a foreign body as compared to the group
that used the augmented display, whereas task completion time and accuracy
remained stable between both groups [27].

On a side note, Barad notes that while most AR devices include some kind of voice
recognition-based control, this has several undesirable consequences in practice,
due to general noise in the OR and the lack of fine control achievable. In the
experience of Barad, these limitations result in rare intraoperative usage of this
modality [4].

2.3.1.3. Robot usage in the Operating Room

Side effects of robot usage in the OR Lai et al. [100] study the effects of
MIRS on the roles and communication of the OR team. Robot-assisted surgery is
usually performed with teams of five persons: Two nurses, an anesthesiologist,
the operating surgeon and an assisting surgeon. Almost all of these roles in the
OR are affected as their tasks in MIRS are extended in comparison to traditional
laparoscopic interventions:

• Surgeons are placed farther away from the situs, outside the sterile field,
while conducting the intervention. They are therefore more dependent on
the OR team to communicate information about the status of robot and
patient. Being physically separated from the sterile field has even been
reported to lead to a sense of isolation from the patient.
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Figure 2.11.: Team positions during an intervention performed with the da VinciTM

surgical robot system. Left: The OR personnel works in close prox-
imity to the patient (shown during docking of the robot); right: The
surgeon is located outside the sterile zone, physically distant from
the patient.

• Anesthesiologists need to check that while the robot is docked to the patient,
the robot does not harm the patient, e.g. by knocking out the airway or
hitting the patient.

• Nurses face a more complicated task as they have to conduct the changes
of the robotic tools, which need to be coordinated with the surgeon. In
interviews with stakeholders in MIRS, Lai et al. noted that nurses “must
spend energy and attention attending to the needs of the robotic system,
which can divert their attention from the patient.” [100]

Both Lai et al. and Randell et al. emphasize that, due to the changes in the OR
that result from MIRS, especially the remote location of the surgeon as shown in
Figure 2.11, it is important that the whole team has access to the same information
and a “shared situation awareness” [100, 152].

Concerning the impact of robotic surgery, it is further noted by Healey et al. that
the surgeon faces considerable demands to “select and filter information from
noise whilst attending to multiple concurrent tasks” [56]. This underlines the need
for non-intrusive modalities to convey information to the surgeon in a way that
does not further increase the high cognitive load.

Non-clinical performance characteristics At a recent FDA workshop on chal-
lenges and opportunities of RASDs [185], Taylor put forward several technical
characteristics, including the following:

• Safety-related considerations:

The system shall not make unintended motions. This has to be guaran-
teed by redundant means to detect failure.
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The system should stop or pause in case of detection of an error or
unexpected sensor event. The remaining robot motion after receiving
the stop command has to be limited to a small, application-specific
amount, which in turn limits the maximum actuator speeds.

Unintended contact with either patient, OR personnel or OR equipment
has to be avoided, especially with parts of the robot not directly visible
to the surgeon.

• Human factors and interfaces: The surgeon needs to interact with informa-
tion infrastructure without disengaging from the patient.

Looking into the future, Taylor postulates that “Surgical robots will be only one
element in an increasingly information-intensive environment. In many respects,
the “robot” may more appropriately be thought of as the room.” [173].

2.3.2. Safety in human-robot interaction

2.3.2.1. General concepts

To allow for shared workspaces between humans and robots, the robot either has
to be constructed in a compliant way so that it cannot physically harm the human,
even in case of a collision, or some sort of sensing capability is required that allows
to apprehend and react to potentially unsafe situations.

The former concept, which is employed in several new collaborative industrial
robots under the term soft robotics, inherently allows for the robot’s end effector to
deviate from its planned position, e.g. if the robot arm is pushed away by a human
in case of a collision. Especially in the scenario of MIRS, the concept of soft robotics
is not applicable as each instrument motion needs to be performed in accordance
with a remote center of motion (the trocar point) and deviations of the instrument
tip poses from those intended by the surgeon can lead to injuries. In addition,
in soft robotics human-robot collaboration scenarios, special diligence has to be
paid to the the objects handled by the robot in order to eliminate the possibility
of injuries caused e.g. by accidental contact between human and handled sharp
objects such as medical instruments.

For sensor-based safety concepts, different kinds of sensors are available. A broad
categorization of robot’s sensors is the distinction between proprioceptive sensors,
which are used to perceive the internal state of the robot, e.g. encoder values and
joint angles, and exteroceptive sensors that offer information about the external
world, such as distances to objects, sound or light levels [116]. Sensors can be
further divided into contact and non-contact sensing. In addition, external sensors
that offer information about the environment, such as 3D cameras, will also be
classified as exteroceptive sensors in the following.
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The following sections give an overview of relevant works on safe human-robot
interaction, based on different kinds of sensor concepts.

2.3.2.2. Integrated and attached sensors

The latest generation of light-weight robots developed by DLR, the LWR 4 and
the MiroSurge arms, feature integrated torque-sensors in every joint. The force
and torque that are measured at each joint are the combination of forces based on
the robot’s structure and motion, including static forces like gravity and dynamic
forces caused e.g. by acceleration, and potential external forces that are applied to
the robot. By calculating the current gravity-induced forces based on the known
pose of the robot, external forces can be calculated per joint. This allows for contact-
based proprioceptive sensing, i.e. collisions between robot and environment can
be detected as soon as the contact force is detectable by the robot [24]. However,
due to the contact-based sensing principle, it is not possible to preempt collisions
as they cannot be detected prior to the time of their impact.

Escaida et al. study the potential of capacitive tactile proximity sensors that might
be fitted to robot arms, similar to the concept of an artificial skin. As the sensors
offer detection of both touch and proximity of objects, they enable preemptive
braking or trajectory re-planning of the robot before a collision occurs. Early exper-
iments show the feasibility of using such sensors for tracking objects close to the
sensor matrix, even under occlusions, and preemptive collision avoidance [132].

In the PhD thesis of Ostermann, a norm-compliant sensing concept is developed
based on multiple small ultra-sound sensors that cover the whole surface of one or
multiple segments of an industrial robot. The realized prototype offers redundant
sensing due to low inter-sensor distances and achieves a latency of 30 ms [140].

Figure 2.12.: Examples of attached sensors for distance-sensing in the context of
safe human-robot collaboration. Left: Concept rendering of matrix
of capacitive tactile proximity sensors and their sensing range [132];
right: complete realization of norm-compliant, ultra-sound-based
range sensing [140].
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The key benefits of non-contact-based sensing concepts such as both aforemen-
tioned systems are that they allow for a reasonably high spatial resolution and
completely avoid occlusions, as the measurements originate at the robot itself.
However, the sensors have to be either integrated into the robot during the de-
velopment phase or added at a later time, which requires extensive hardware
modifications in order to attach both the sensors and the necessary power and
data cables (see Figure 2.12). In both cases, the feasibility of fitting a robot with
such a sensor matrix heavily depends on the complexity of the surface geometry
of the robot and has to be mechanically adapted for each type of robot. Further-
more, sensor integration increases the volume of the robot arms, which contradicts
the surgeons’ wish for smaller robot arms, as voiced e.g. in a survey of the FDA
Medical Product Safety Network [33]. Independent of these considerations, it is
unclear how either sensing modality would be affected by the sterile drapes in
which robot arms are covered during surgical interventions.

2.3.2.3. External optical sensing

2D camera based approaches The SafetyEYE by Pilz, Germany, is a norm-
compliant, commercially available safety system for industrial applications based
on optical workspace supervision. The sensing component consists of a housing
with three integrated 2D cameras which is ceiling-mounted to offer a top-down
view of the robot cell. The acquired 3D data is continuously checked for violation
of predefined, static safety zones. Depending on the zone in which such a violation
is detected, different reactions can be executed, such as limiting the movement
speed or emergency-stopping the robot [149].
Due to the top-down view of the scene, a high mounting point of the camera is
required to achieve a sufficiently large observable area as depicted in Figure 2.13.
Also, close human-robot interactions cannot be sensed accurately.

The PhD thesis of Ladikos focuses on multi-view 3D reconstructions for interven-
tional environments. Using a configuration of 16 synchronized 2D cameras, they
first perform histogram-based background subtraction for determining objects of
interest and then reconstruct the 3D shape of these objects using the Visual Hull
approach. The safety aspect of the system is evaluated in the context of using
a C-arm in a laboratory setting with the applications of collision avoidance and
radiation monitoring specific to human body parts.
Ladikos concludes that the transfer of the system to a real intervention room faces
multiple challenges, especially in relation to the background segmentation which
is not robust enough for changing backgrounds, homogeneously-colored environ-
ments and changing lighting conditions. The usage of ToF cameras is proposed to
overcome several of these limitations [99].

Stengel et al. similarly employ a five camera system for reconstructing the shape of
a human freely moving within a robotic work cell. A Single Gaussian-based back-
ground model is learned offline and used for online detection of foreground objects,
taking into account dynamic occlusions by the robot. Based on the foreground
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classification by all cameras, a voxel-based scene reconstruction is performed [166].
As this work is targeted at industrial applications where the environment can be
strictly controlled, it assumes a static background where humans and robots are
the only moving entities.

Figure 2.13.: Examples of (multi) 2D camera based concepts for safe human-robot
collaboration. Left: SafetyEYE surveillance concept with color-coded
safety zones [149]; center: Virtual scene with voxel-based human
reconstruction and virtual robot [166]; right: Projection-based safety
space around an industrial robot [189].

Tan and Arai focus on human-robot collaboration in a cellular manufacturing
setting where a shared workspace exists on a workbench which is located between
human and robot. In addition to standard industrial safety measures such as light
fences, the human’s upper limbs are tracked based on color information applied
to the clothing, using a 2D stereo vision system. While no further details are given
as to how the human posture is taken into account for safety considerations, it is
hinted that a rule-based system is used [170].
In later works, the human tracking is extended to a three camera configuration,
evaluated as three independent stereo vision systems, to prevent occlusions. As
the extension focuses on the camera system and tracking accuracy, no further
information about the safety aspect is given [171].

While also researching safe human-robot interaction using 2D cameras, Vogel et
al. employ a radically different approach compared to the aforementioned works.
Instead of reconstructing 3D information from 2D images, they aim to reduce
the problem of detecting potential collisions into 2D space. They calculate a top-
down 2D view of a safety space around the robot based on its current pose and
a simplified geometrical model of the robot. Using a ceiling-mounted projector,
they project this view into the scene and segment the resulting projection in each
of four ceiling-mounted cameras. The real projection is then checked against an
ideal virtual projection, taking into account occlusions by the robot itself. Objects
within the safety space result in differences between real and virtual projection
and can therefore be detected [188, 189].
This approach is very effective in terms of computational cost and intuitively
understandable for users, however it is not applicable to crowded and changing
unknown environments as they influence the camera’s view of the projection.
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3D camera based approaches Graf et al. present a first approach to safe inter-
action between a human and an industrial robot based on a single, ceiling-mounted
ToF camera. Based on the human posture, which is estimated from the acquired
depth data, potential collisions with a known robot trajectory are detected and
prevented by re-planning the robot’s trajectory [43].
Continuing these works, Dittrich et al. extend the original sensing setup with a
Kinect v1 for full skeleton tracking of the interacting human. They also introduce
fuzzy logic for estimating the risk of a situation, based e.g. on the view direction of
the human, as well as a motion planner that takes the estimated risk into account.
Further, different command and translation gestures are implemented that allow
for a gesture-based control of the robot [26].

Rybski et al. combine stereo vision with 3D cameras to supervise a scene in an
industrial work cell. Similar to the works of Stengel et al., they first estimate a
background model of the empty scene and then classify all moving foreground
objects in the scene as persons, represented by a 3D occupancy grid. By surround-
ing the robot with a danger zone as well as a larger warning zone and similarly
surrounding persons with a safety zone, intersections between the different zones
can be checked for potential collisions [160].
Due to the initialization on an empty scene and the assumption that the scene does
not change, this approach is also not feasible for crowded or changing scenes such
as in the OR.

Schmidt et al. present an approach to online trajectory adaptation based on de-
tected humans. While using two Kinect v1, they employ a custom detection of
moving persons that consists of background subtraction, again from a previously
learned background model, and filtering of the acquired foreground objects. To
efficiently calculate the distance between the point clouds of detected persons
and the virtual robot model, they create a voxel grid and calculate distances to
the center of each occupied voxel only. To avoid collisions, the trajectory of the
robot is adapted when the distance of the end-effector to the closest human would
decrease beneath some predefined threshold [162].
This is only feasible if the robot’s task consists of reaching discrete positions with
its end-effector, e.g. in pick and place tasks, without restrictions on the behaviour
in between these goals.

Morato et al. present a multi-camera system for safe human-robot collaboration
in a simulated assembly task. They fuse the human skeleton tracking from four
Kinect v1 using a Kalman filter and abstract the human body with spheres of
different sizes virtually attached to the detected joint positions. Assuming a
known trajectory of the robot, they propose a simple bi-modal control strategy
where robot motion is stopped if the detected human comes within a certain
distance to the planned trajectory [126].

Reardon et al. present a different approach, targeting a healthcare scenario in which
both mobile and stationary robots are envisioned to cooperate in order to transport
and sterilize non-sterile instruments after an intervention. In their experiments, a
humanoid soft robot, the Baxter by Rethink Robotics, USA, is used to both supervise
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Figure 2.14.: Examples of (multi) 3D camera based concepts for safe human-robot
collaboration. Left: Different risk estimation for robot poses based
on viewing direction of user [26]; center: Approximation of user
with spheres based on multi-camera skeleton tracking [126]; right:
Intersection of danger zone around robot and safety zone around
user based on occupancy grids [160].

the scene and give visual feedback to users. Supervision is performed using a
Kinect v1 mounted on the Baxter’s head, allowing for dynamic rotation of the
Kinect towards the ROI. Using the distance between the user and the mobile robot
as a safety metric, the Baxter signals the safety state to the user by displaying
different “faces” and raising its arms in case of safety-critical situations [155].

2.4. Summary and open research questions

Due the holistic approach of this thesis, the proposed system addresses several
topics that have been researched in both the surgical and the industrial domain.
These are listed in the following with a short description on the respective research
gap related to safe and intuitive usage in a surgical scenario.

Apart from the GestoNurse [82], which is not a surgical robot system in a narrower
sense, current and upcoming surgical robot systems do not integrate any sensing
modalities that allow for contact-less perception of their environment. For general
robotics, different approaches of equipping robots with exteroceptive sensors have
been proposed [132, 140]. However, especially in the medical context, it is not
feasible to retroactively apply such sensing concepts to existing robot systems due
to their requirements in terms of space, wiring and control. Further, it is unclear
if and how these kinds of sensors would be affected by sterile draping in which
robots are covered during interventions.

In industrial scenarios, the best practice for the usage of robots has long been a
complete spatial separation between humans and robots, enforced by fencing. This
is slowly being replaced by optical supervision systems that establish static safety
zones in lieu of fencing [149]. Common research approaches for human-robot
collaboration in a shared workspace focus on dynamic adaptation of the trajectory
of the robot [26, 43, 162]. However, this is not applicable for robot-assisted surgery
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as it requires both a priori knowledge about the trajectory of the robot and the
possibility of altering the trajectory of the robot to avoid collisions.

Further, many approaches to safety in human-robot collaboration assume a static,
known environment that does not change apart from the motions of humans and
the robot. This is often employed for background segmentation as a principal
step in the algorithmic pipeline, for example with 2D cameras in the medical [99]
and industrial scenario [166], but also with 3D cameras [162, 160] in an industrial
scenario. It is especially important to note that all works assume a static, known
position of the robot in the scene which needs to be established beforehand. This is
not the case for surgical interventions, where the positioning of the surgical robot
varies with each patient.

The usage of 3D cameras in the OR has primarily been researched regarding
applications to touch free interaction by gesture based control [137] and 3D la-
paroscopy [92, 115, 145]. Recent works on monitoring of the OR focus on extraction
and interpretation of human poses, but do not take the surgical robot itself and
the non-human environment into account [9].

Works on applications of various forms of augmented reality to a surgical setting
have focused on medical applications. A prime example is the augmentation of
a view of the patient with anatomical features, which has been realized using
different modalities such as endoscopic video streams as mixed-reality screen
based AR [27, 34], handheld displays as see-through AR [128] and projection-
based approaches as SAR. The latter are usually standalone approaches that
do not integrate a surgical robot system [91, 111, 172, 194]. Employing AR for
visualizing the state of the robot and giving feedback to the OR team has not been
investigated yet.

To summarize, there are clear gaps in research concerning the monitoring of
surgical robots for safety purposes:

• No concepts exist for intraoperatively detecting and verifying the robot’s
position.

• The effects of sterile draping on scene perception by range imaging cameras
have not been investigated.

• Industrial approaches to safe human-robot collaboration by altering the
robot’s trajectory are not applicable to teleoperated surgical robot systems,
where no trajectory is known prior to the robot’s motion.

• Approaches based on background segmentation and/or known environ-
ments are not applicable to the surgical scenario.
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This chapter gives an overview of the proposed system, both in terms of concept
and algorithms. First, the perception channel is presented by deriving the clin-
ical prerequisites and technical design criteria of the multi-camera supervision
system and establishing the two-level scene model. The algorithm for forward
propagation of semantic labelling is then introduced which allows to transfer
semantic information between both levels of the scene model. After these steps,
all necessary information for safety considerations is available.

The safety concept is discussed next, starting with the Shape Cropping algorithm
for spatial segmentation of the perceived scene into different zones around the
robot. Based on Shape Cropping, different safety measures are derived that target
the setup of the robot system as well as safety during online usage.

In the last part of this chapter, requirements for a feedback channel that relays in-
formation back to the OR personnel are put forward. The concept for such a visual
feedback channel based on SAR is introduced together with a secondary usage of
the projector for registration of the 3D cameras of the supervision system.

3.1. Operating Room Monitoring

For allowing a safe and intuitive usage of a robot system, a modality for perceiving
the environment of the robot is required. While such a modality can employ
proprioceptive and/or exteroceptive sensors, this thesis focuses on exteroceptive
sensors, i.e. 3D cameras, due to the drawbacks of proprioceptive sensors for usage
in the OR (see section 2.3.2.2).

3.1.1. Prerequisites

3.1.1.1. Clinical prerequisites

In the OR, there are many challenges for using 3D cameras in the context of
safe human-robot interaction. The ever-changing positions of the OR personnel
during and between interventions lead to dynamic occlusions around the OR
table and the robot system. Ceiling-mounted medical equipment, such as OR
lamps or monitors which tend to be moved occasionally during interventions,
presents another source for occlusions, albeit from a different angle. Therefore,
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a supervision system needs to be robust against occlusions and cannot rely on a
single point of view of the clinical scene.

In order to keep the OR free from contamination, it is kept under slightly positive
pressure during interventions and the air is recommended to be completely ex-
changed between 15 and 20 times per hour [109]. This is achieved by integrating a
ventilation system into the ceiling, located over the sterile zone. Many such venti-
lation systems produce a laminar air flow, i.e. air streams out in a homogeneous
flow without turbulences, which has been shown to reduce the risk for Surgical
Site Infections (SSIs) for certain types of interventions, e.g. orthopaedic surgery
[16]. To not interfere with laminar air flow, no devices that cause air turbulence,
i.e. due to an integrated fan, may be mounted above the OR table.

Another important aspect of bringing additional technical systems into the OR is
their requirements in terms of space. For decades, it has been reported that the
OR becomes increasingly crowded, e.g. due to the introduction of laparoscopic
surgery and its needs for additional equipment compared to open surgery [3].
This trend continued with the advent of surgical robot systems, which also require
a significant amount of space and have been reported to lead to additional long
travel distances in the OR [2]. Any additional technical systems that do not require
access to the patient therefore need to have the smallest footprint possible in the
direct vicinity of the OR table, without requiring additional floor space.

3.1.1.2. Technical design criteria

The technical design criteria that have to be taken into account by the supervision
system stem from different aspects: oclinical prerequisites, safety requirements
and future-proofing.

The clinical prerequisites described above necessitate realizing the supervision
system as a multi-sensor setup to reliably monitor the ROI, even if the line-of-sight
of one or more sensors is blocked. Due to the requirements of not disturbing
laminar air flow and occupying a minimum amount of space close to the situs,
it is not possible or desirable to place any computers into the OR. Instead, the
sensing devices, i.e. 3D cameras, have to be spatially separated from the processing
devices.

From a safety-oriented perspective, the system needs to be redundant on all
layers in order to cope with possible problems caused by the hardware itself, e.g.
malfunctions of single sensors, by the infrastructure, e.g. networking components,
or by circumstances which cause a whole group of sensors to malfunction.

Furthermore, the system requires a high modularity in order to be device-agnostic,
i.e. not tied to a specific set of components, and therefore being extendable with
new sensors and components.

44



3.1. Operating Room Monitoring

3.1.2. Supervision system

Taking into account the technical and clinical constraints as well as the charac-
teristics of sensors as described in section 2.2.2, this thesis proposes a modular
supervision system, consisting of multiple 3D cameras, to perform real-time mon-
itoring of the OR environment around the surgical robot system. The proposed
supervision system consists of two independent subsystems: The first subsystem
is based on industrial-grade PMD cameras, the second subsystem is based on
Kinect v1 cameras.

PMD cameras and Kinect v1 cameras employ different range imaging methods,
namely ToF and structured light (see section 2.2.2). Combining two subsystems
with different sensing principles to one supervision system offers several key
advantages:

• Both types of cameras display diametrically opposing strengths and weak-
nesses that complement each other. Kinect cameras have the drawback of
being “blackbox”-devices that do not offer external control, configuration or
triggering, but offer a high lateral resolution and basic semantic interpreta-
tion, i.e. human tracking. PMD cameras can be fully configured, but offer
only a low lateral resolution, which increases the difficulty of semantic scene
interpretation.

• By combining two subsystems with different sensing principles, the robust-
ness of the complete system against sensor-specific measurement deficits is
increased.

• ToF cameras heavily suffer from interferences which limits the number of
cameras that may be used in the same volume (see section 2.2.2.3). Extensive
tests conducted in this thesis have shown that Kinect cameras neither suffer
from nor cause interferences with ToF cameras (see section 5.1.1), which
enables the use of additional cameras in the same volume.

The cameras of the supervision system are placed close to the operating table,
just over head height, to perceive the direct environment of the surgical robot
system and minimize the impact of occlusions caused by persons, e.g. the scrub
nurse, standing close to the situs. Figure 3.1 illustrates the spatial layout of the
supervision system.

3.1.3. Two-level scene model

The low level, geometrical information gathered by the various 3D cameras of the
supervision system needs to be organized and interpreted on a higher level. For
this, a two-level scene model is proposed where each level corresponds to one of
the subsystems of the supervision system. On both levels, all information acquired
by the according camera subsystem is fused into a common scene representation.
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Figure 3.1.: Illustration of the spatial layout of the proposed supervision system.
Left: Top view with six camera positions located sideways of the operat-
ing table; right: Side view depicting the height of the camera positions.

The first level consists of purely geometrical information without semantic inter-
pretation and serves as the basis for all safety-related algorithms. On this level,
all data acquired by the PMD camera subsystem is integrated to establish a scene
model with a lower latency, albeit at a low spatial resolution. As PMD cameras
are designed for industrial use, there is full control of the data acquisition pro-
cess, including synchronization, integration time and modulation frequency per
camera.

On the second level, geometrical information from the Kinect v1 subsystem is
semantically interpreted, e.g. by segmentation of persons or OR devices in the
scene. As described above, the Kinect cameras offer no external control over
the data acquisition process, but deliver a high resolution point cloud with color
information. Due to this lack of control and the higher latency compared to the
first level, the second level cannot be used for safety-critical algorithms, but for
semantic scene interpretation.

3.1.4. Forward propagation of semantic labelling

It is desirable to combine the different advantages of both levels of the scene model,
namely low latency on the first level and semantic information on the second level,
to enable a low latency scene representation with semantic information.

To achieve this, a general algorithm is proposed for forward propagation of se-
mantic labelling between two independent data sources with different timing
characteristics, such as latency and frame rate, that only requires a known map-
ping between each data source. The algorithm consists of two parallel processing
pipelines: One pipeline processes all data from the faster, semantic-free data
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source by calculating the optical flow and providing a tracking estimate in every
step based on the last tracking information available. The second pipeline pro-
cesses information from the slower, semantically enriched data source to update a
background model of the scene and inject new tracking information into the first
pipeline.

As both levels of the scene model contain geometrical information in the form of
point clouds and there is a known spatial relation between each pair of cameras,
this algorithm can be applied to the scene model to forward calculate the semantic
annotations from the second level to the first level. This results in a low-latency
scene representation which is annotated by e.g. human tracking information.

3.2. Safety concept

Based on the supervision system presented in section 3.1.2, this section proposes
different safety features with the overall goal of establishing a safe, redundant
monitoring capability for surgical robot systems in the OR. Each proposed safety
feature addresses one of the non-clinical performance characteristics put forward
by Taylor (see section 2.3.1.3).

3.2.1. Differences from industrial settings

In industrial applications, the exact task that a robot has to perform is known
beforehand and human-robot interaction usually only involves one or more opera-
tor(s) who are acquainted with the specific scenario. The manipulated object is
inanimate and the manipulation task is mostly either not time critical or, if time
critical, a failure caused by a delay does not result in human injuries. Therefore, it
is viable to prevent collisions between humans and robots by altering the trajectory
of the robot. Furthermore, the layout of robot cells as well as human-robot collabo-
ration workspaces can be optimized in advance to allow for optimal placement
of sensors. For a given task, e.g. assembly, the position of non-mobile robots is
fixed, so the spatial relation between safety sensors and the robot only needs to be
calibrated once and can be assumed to be static afterwards.

The clinical scenario of an OR, however, has many differences compared to an
industrial setting. It is usually crowded by no less than five people who need
to focus on their primary task, the medical care of the patient. The position of
the patient and surgical robot system varies between each intervention, so no
fixed relation between robot and sensors can be assumed and it is not possible to
optimize the placements of sensors to a specific task. In the case of MIRS, the robot
is telemanipulated and is in continuous contact with the patient, i.e. it has to strictly
adhere to the position of the trocar points. For these reasons, avoiding external
collisions between OR personnel and robot by altering the robot’s trajectory is not
feasible in MIRS scenarios.
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3.2.2. Robot safety zone

A safety zone is established around each arm of the surgical robot system to ensure
that potential collisions between the robot and its surroundings can be detected
before they occur, thereby allowing for initiating an appropriate reaction. Each
safety zone is dynamically updated in real time in order to match the current pose
of the corresponding robot arm, based on the robot’s joint angles and an internal
kinematic model. While the safety zone is clear of any obstacles, there is no danger
of collision with the OR personnel, the patient or inanimate objects in the scene. If
the safety zone is violated, the robot is in close proximity to a nearby object which
can necessitate an according reaction. Figure 3.2 illustrates the safety zone around
a robot arm and the detection of violations by OR personnel or environment.

Figure 3.2.: Illustration of the robot safety zone in different situations. Left: Clear
safety zone without obstacles; center: Violation of safety zone by per-
son; right: Violation of safety zone by object, e.g. OR lamp.

In contrast to multi-zone approaches as presented e.g. by Rybski et al. [160],
where intersections are calculated only between detected users and the robot, the
proposed single safety zone approach takes into account the whole environment.
As a result, even if semantic information is missing or incorrect, i.e. a person is not
correctly classified and tracked, potential collisions are still detected.

3.2.3. Shape Cropping algorithm

To implement the safety zone approach, two requirements have to be met: The
robot has to be removed from the virtual scene and the remaining scene needs
to be segmented based on the safety zone boundaries. As the virtual scene is
represented as a point cloud in the proposed scene model, it is desirable to use
a geometric segmentation approach that can fulfill both requirements. This is
achieved by the proposed Shape Cropping algorithm1.

1 There is a similarly named algorithm developed at the French National Institute for computer
science and applied mathematics (INRIA) which is called “3D Shape Cropping” [38]. Contrary
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Algorithm 1: Shape Cropping
input :Point cloud of scene, segments of inner and outer hulls as

meshes, robot joint angles
output : Segmentation of scene into inlier, outlier and neutral

foreach segment s ∈ (inner hull ∪ outer hull) do
s← fk transform(s, joint angles)

end
roi← crop(scene, aabb(

⋃
s, s ∈ outer hull))

foreach segment s ∈ inner hull do inlier, roi← crop(roi, s);
foreach segment s ∈ outer hull do outlier, neutral← crop(roi, s);
scene← scene ∪ neutral

The Shape Cropping algorithm requires two pre-computed meshes per segment
of the robot which are both derived from the Computer Aided Design (CAD)
model of the according segment and have been geometrically simplified. One
mesh represents an inner hull, which is a volume that encompasses the according
segment of the robot. Compared to the original CAD model, the mesh is slightly
enlarged. The other mesh represents an outer hull, which corresponds to the safety
zone as described above. Its enlargement as compared to the original segment
model therefore depends on the desired margin of the safety zone.

In each iteration of the algorithm (see Algorithm 1 for formal description), all
segments of the inner and outer hull are positioned according to the robot’s current
pose based on the joint values and the forward kinematics of the robot. A ROI is
extracted from the point cloud that represents the virtual scene based on an Axis-
Aligned Bounding Box (AABB) around all segments of the outer hull. The ROI is
then spatially segmented into three separate classes as depicted in Figure 3.3:

• Inlier: Points within any segment of the inner hull, i.e. belonging to the robot.

• Outlier: Points within any segment of the outer hull, but outside of any inner
hull segment, i.e. points that violate the safety zone.

• Neutral: Points outside of any hull segment.

When applied to a real world scenario with 3D measurements obtained by actual
3D cameras, this geometric segmentation often does not correspond to a semanti-
cally correct segmentation: Due to noise present in the point cloud representing
the virtual scene, caused by incorrect data acquired by the 3D cameras, points are
often classified wrongly. For example, points corresponding to the robot surface
can be classified as outlier points, if the distance error of the measurement is large
enough to place them outside of the inner hull (see Figure 3.3). This needs to be
taken into account in all subsequent processing steps.

to the algorithm proposed in this work, where a known shape is segmented from a 3D scene,
it aims to calculate a polyhedral bounding surface of an unknown object based on multi-
perspective views.
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Figure 3.3.: Illustration of the Shape Cropping algorithm. The point cloud rep-
resenting the scene, depicted as colored points on object boundaries
observed by one overhead camera, is segmented into different classes
based on the shape and pose of the robot: Inlier points inside the inner
hull belong to the robot (green), outlier points in the outer hull violate
the safety zone (red), neutral points outside either hull are distant
parts of the scene.

3.2.4. Safety Features

3.2.4.1. Robot localization

For traditional laparoscopic interventions, the locations of the access ports, through
which the instruments are inserted into the patient, are determined by anatomical
constraints only: Following general medical guidelines, the exact position of each
access port is determined by the OR personnel during an intervention. For MIRS,
the mechanical design of the robot presents additional constraints: The trocars
need to be placed in a way that prevents external collisions of the robotic arms,
which often results in trocar positions that are different from the traditional port
location [118]. While this can be performed somewhat intuitively by experienced
personnel, an even bigger challenge is to optimize the trocar positions so that
dexterity of the surgical instruments inside the patient is maximized. As the
reachable workspace depends on both the configuration of the robot and the
location of the pivot point relative to the robot, the correct planning of both the
trocars and the position of the robot arms can be critical to guarantee full dexterity
for the surgeon [65].

For these reasons, an intraoperative setup verification is proposed as a novel safety
measure that detects the positions of the robot arms and checks them against
the preoperative planning. As the proposed system has the goal to work with
different types of robots in an OR setting, the detection of the robot arms cannot
rely on color cues: Apart from potentially varying colors between different models
and manufacturers, most current and upcoming surgical robot systems are white,
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which is the same color as most other OR devices. Therefore, the robot arms need
to be detected based on their coarse shapes. However, to guarantee sterility, robot
arms are covered with sterile drape before they can be positioned close to the
patient. This can influence the shape of the robot as perceived by the camera,
thereby preventing the detection of the robot arms based on 3D keypoints as
estimated by keypoint detection algorithms such as NARF or 3D SIFT.

Figure 3.4.: Illustration of the robot localization. Left: With passive localization,
first a landmark such as the OR table is detected and second the
robot is localized in the smaller resulting search space; right: Active
localization is based on spatial change detection of a motion performed
by the robot.

In the proposed system, the localization of each robot arm is therefore performed
in two steps as illustrated in Figure 3.4:

• Initial localization: The position of each robot arm is detected with a lower
accuracy, using one of the following methods.

Passive localization: To minimize the search space, localization is per-
formed based on known landmarks in the scene. For robot arms
mounted to the OR table, the OR table itself can be used as such a
landmark as it limits the search space to the space directly adjacent to
the OR table rails.

Active localization: Each robot arm performs a pre-defined motion which
is detected by thy supervision system using spatial change detection.
Based on the performed motion and the shape of the detected volume,
the position of the robot is calculated.

• Localization optimization: The detected position is refined to improve the
accuracy. In this step, the Shape Cropping algorithm is applied to transform
the localization task into an optimization problem. To evaluate the quality
of a detected robot position, different measures are defined as optimization
goals based on the number of inliers and outliers.

51



3. System Concept

As the localization optimization step evaluates discrete locations, starting at the
position originally detected by the initial localization, a heuristic is required for
finding the correct position. First, the steepest ascent hill climbing algorithm is
applied by sampling equally-spaced positions in a sphere around the initially
located position. This is repeated with increasingly smaller spheres and therefore
increasingly fine granularity of the detection. However, the criteria evaluated
by the localization based on shape cropping can lead to systematic errors which
have to be corrected specifically. When for example only a single camera is used,
the shape cropping algorithm exhibits a tendency to detect the robot too close
the camera, as this leads to a higher inlier

outlier
ratio, which is one of the optimization

criteria. This is corrected by evaluating additional positions along the camera-
robot axis with an increasing distance between robot and camera. Another such
example is an erroneous initial detection which leads to classifying most of the
robot as outliers. This can be remedied by an outlier-based correction step that
shifts the estimated localization towards the direction in which most outliers are
detected.

3.2.4.2. Collision handling

Detection of impending collisions Detection of impending collisions is the
basis for any further situation-specific reaction, such as collision avoidance and/or
warning the OR personnel. Detection of impending collisions is again based on
shape cropping: The safety zone, represented by the volume between inner and
outer hull, is continuously monitored for violations. A violation is detected if the
number of outliers in the safety zone of one segment increases significantly over
a short period of time. Based on euclidean clustering, the shape of the violating
object and its position relative to the robot is then determined. This allows for
both reacting to the impending collision, e.g. by stopping the robot motion, and
communicating information about the potential collision and colliding object to
the OR personnel.

Collision classification Contrary to the industrial setting, where avoiding any
contact between human and robot is considered the gold standard for safe in-
teraction, the surgical domain requires a more detailed consideration. For the
purpose of this thesis, a collision shall be defined as an event of establishing contact
between two entities that were spatially separated before. Therefore, the term collision
will be used as a general term to refer to both voluntary and involuntary contacts
without specifying involved forces or limits thereof. Concerning the OR domain,
potential collisions with the robot can be classified as belonging to one of three
main categories:

• Collision with patient: During an intervention, robot arms are not allowed to
come into contact with a patient, except for the attached surgical instruments
when used to perform the intervention. Involuntary contact can lead to harm
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to the patient, ranging from bruising to serious harm if e.g. an airway is
knocked out. It is usually the task of the anesthesiologist to ensure this (see
section 2.3.1.3).

• Collision with environment: Collisions with the environment include all cases
where a robot arm comes into contact with or pushes against any object other
than a person in the OR, i.e. other than patient or OR personnel. While this
does not pose a direct threat to either patient or OR personnel, it has adverse
effects on the performance of the robot or on the object to which the robot
applies pressure. Both cases can indirectly lead to harm to the patient, e.g. if
the robot does not perform the correct motion or if the object abruptly moves
under continued pressure from the robot arm.

• Collision with OR personnel: There are different situations during which
the robot can come into contact with the OR personnel. Active collisions
occur when the robot performs a motion that leads to contact with a person,
whereas passive collisions are caused by a person coming into contact with
a robot arm that is not moving. A further distinction needs to be made
between voluntary contact, for which the person is aware of the impending
collision or is actively causing it, and involuntary contact.

Rule-based collision prevention For the scope of this thesis, a rule-based strat-
egy for collision handling has been implemented. As detailed above, collisions
between a robot arm and the patient or the environment can lead to patient harm
and therefore need to be prevented. If an impending collision between a per-
son and a robot arm is detected, knowledge about the current situation may be
required to enable an appropriate reaction.

As standard collision avoidance methods such as altering the trajectory of the
robot are not applicable for robot assisted surgery, especially in case of MIRS, an
emergency stop of the robot is used for collision avoidance within this thesis. This
is in line with the proposal of Taylor that “[a surgical robot] system should stop or
pause motion [. . . ] on system detection of error or sensor event” [173].

Table 3.1 shows the resulting decision matrix for all combinations of the current
robot state and collision class. The possible reactions are:

• stop: An emergency stop is triggered to prevent a collision.

• situation-based: Reaction of the impending collision is depending on the
current situation.

• “-”: No reaction will be performed, i.e. the collision is allowed to occur.

Impossible combinations are designated n/a. As situation-based reactions require
online detection and reasoning about the surgical situation and its medical aspects,
which is outside the scope of this work, they were simplified as follows: When a
robot arm is in hands-on mode, collisions are allowed to occur, as the OR personnel
is in full charge of the robot movements at this time. Active collisions with the OR
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passive collision active collision
non-moving hands-on moving

Patient n/a - stop
Environment n/a - stop
OR personnel - situation-based situation-based

Table 3.1.: Decision matrix for rule-based collision prevention based on collision
class and robot state.

personnel always lead to an emergency stop when the according rule is triggered.
Therefore, the proposed decision matrix is in line with the cited requirements of
the respective ISO norms (see subsection 2.1.3). It adheres to clause 5.10.2, 5.10.3
and 5.10.4 of ISO 10218-1 and does not allow for quasi-static contacts to happen
between robot and either OR personnel or patient.

3.2.4.3. Continuous pose supervision

Especially for medical applications, potential malfunctions of robot systems can
have severe consequences. In MIRS, the surgeon directly controls all motions of
the robot and guides the instruments based on their relation to the target region
in a way of visual servoing. As the surgeon will unconsciously compensate for
slightly incorrect robot motions and no autonomous motions are performed by
the robot, it might slip the attention of the OR personnel if the real position of the
robot slightly differs from the desired one, e.g. due to an erroneous actuator in one
of the joints. However, if the trocar constraint for the robot arm is implemented in
software and not mechanically based on the robot’s kinematic structure, the trocar
constraint may not be complied with in case of malfunctioning or miscalibrated
joints. This can result in undesired forces being exerted on the abdominal wall of
the patient via the trocar ports.

Continuous supervision of the robot’s pose by a redundant external system, i.e. the
supervision system presented above, is proposed as a measure to mitigate this risk.
Again, the surrounding of the robot is segmented into inliers and outliers using
shape cropping. If the real pose of the robot deviates from the desired one, it also
deviates from the shapes of the inner and outer hull as these are calculated based
on the desired joint values. This results in violations of the safety zone, caused not
by external influence, but by the robot itself. To be able to differentiate between
both, the spatial distribution of the detected violation is analysed via euclidean
clustering: If the cluster that causes the violation is connected to the robot cluster
in the inner hull, the root cause for the detected violation is a dysfunction of the
robot arm. If the violating cluster is not connected to the robot or belongs to
an outside cluster, it is interpreted as an impeding collision as described above.
Figure 3.5 illustrates these cases.
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Figure 3.5.: Illustration of Shape Cropping applied to collision detection and con-
tinuous pose supervision. Left: No violation of the safety zone is
detected; center: The safety zone is violated by an external object; right:
The safety zone is violated by the robot itself due to a slightly incorrect
pose of the robot.

3.3. Feedback to OR personnel

3.3.1. Clinical considerations

As detailed in section 2.3.1.3, the introduction of MIRS has altered the responsibili-
ties and communication between the different persons in the OR, as the surgeon
is now separated from the patient and outside of the sterile zone. This results in
an increased demand for communication and explicit sharing of information. As
Randell et al. note, this is especially true in case of complications, where the OR
team is even more involved and therefore has to be aware of both the current situ-
ation and the current progress of the intervention [152]. This holds true especially
for the assistant surgeon, who is inside the sterile zone and needs to be constantly
aware of the actions and needs of the main surgeon outside the sterile zone [89].

Traditionally, feedback from medical devices in the OR is given using auditory
signals, which enable drawing the attention of the OR personnel to a specific
device, and/or using monitors, which have to be regularly checked. However,
studies have shown that increased noise level in the OR can lead to increased
SSI [98]. Additionally, there is the phenomenon of alarm fatigue, where a high
amount of false alarms results in the medical personnel failing to respond to all
alarm sounds. In hospitals in general, studies have estimated the percentage of
false alarms at 72 % – 99 %, especially in intensive care, with the additional problem
that it is often unclear to the medical personnel which alarm is sounding. While the
percentage of false alarms in ORs is not comparable, occasions have been reported
where muting of alarms in an OR have led to the death of patients [163].

In a study on human factors engineering for improving patient safety in the
domain of cardiovascular operating rooms, Gurses et al. also state that high noise
levels can pose immediate perioperative cardiac surgery hazards. Furthermore,
various problems with tools and technologies are listed as potential hazards,
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including poor usability, inadequate safety features and safety features that do not
fit to the users’ needs and tools [47]. In a study with very similar scope, Pennathur
et al. identified four major sources of technology-related hazards. One of these is
“design factors”, which include: Lack of feedback, information not being available
“at a glance” and no dynamic information presented. Especially a lack of feedback
is related to undesired cognitive load, caused i.e. by uncertainty about the status
of a device and the required attention to deal with it [143].

Concerning the optimal presentation of such feedback, Rayo et al. propose that
data can be presented in a continuous, non-interrupting way, using an alternative
sensory modality, in order to “reduce the overall mental workload required for directing
attention and interpretation”. Using alternative sensory modalities other than sound
can also serve to reduce the overall mental workload [154].

For the reasons given above, it is not advisable to communicate additional in-
formation about the state of the robot system using sound as the main modality.
Rather, a visual approach is required that can dynamically present information in
the scene without distracting the personnel from their medical tasks.

3.3.2. Advantages of spatial augmented reality

As can be seen from the technical and human factors detailed above, it is crucial
that the information gathered by the supervision system and especially the result-
ing safety measures are communicated to the OR personnel in an intuitive and
non-intrusive way. The proposed usage of Spatial Augmented Reality (SAR) fits
these requirements and offers several advantages for providing feedback for using
surgical robot systems in the OR:

• Usage of SAR does not increase the noise level and the amount of different
acoustic signals the OR personnel needs to discern.

• SAR allows to project information onto one or multiple specific locations in
the scene, offering color properties (such as hue and brightness) as well as
arbitrary shapes to convey information. In contrast, auditory signals always
originate at a fixed source and can be modulated only in pitch and frequency.

• Information presented by SAR is visible to all OR personnel alike, thereby
facilitating a shared situation awareness.

• Presenting information directly in the scene, e.g. by projection onto the robot
or the situs, allows the OR personnel to maintain focus on their medical tasks
without the need to e.g. regularly check a secondary monitor.

During an intervention there are many factors that can negatively influence the
quality of projections. Among others, these include: Light being present in the
scene, e.g. coming from the OR lamp in open interventions or illuminating the situs
from within in case of minimally invasive interventions; drapes and covers with
different colors and opaqueness, which crumple and thereby change shape during
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the intervention; different surface reflectivity, especially in case of open surgery.
Therefore, very detailed projections such as text or smaller elements cannot be
relied on to be easily perceivable by the OR personnel and should be avoided. For
these reasons, the SAR system proposed in this thesis does not employ intricate
shapes or text, but instead focuses on conveying information by spatially correct
projection, aided by non-complex shapes and a distinct color palette.

3.3.3. Augmentation concept

In the context of the proposed system, SAR is used to augment the scene with the
following information:

• State of robot arm: Depending on its current mode, each robot arm is illumi-
nated in a specific color that corresponds to its current state, allowing the
user to discern if e.g. the robot arm is currently teleoperated by the surgeon
or if it is decoupled and will not perform motions.

• Instrument poses in MIRS: Based on the known poses of the robot arms, the
spatial configuration of the instruments can be projected onto the situs. This
allows e.g. to quickly see if an instrument is in view of the endoscope and
serves to further a shared awareness of the situation for all OR personnel
involved around the operating table.

• Feedback in case of adverse events: If the expected behaviour of the surgical
robot is overridden for safety reasons, e.g. if the supervision system detected
an impending collision and the robot was stopped, according feedback is
given directly in the scene, e.g. by illuminating an obstacle with which the
robot would have collided.

The points listed above are directly addressing the subject of this thesis: safe and
intuitive usage of a surgical robot system. Each can be realized based solely on
data which is provided either by the supervision system, by the safety features or
by the surgical robot system itself.

If the according information is available and its visibility in close proximity of the
situs is desired, further projections could easily be added from a technical point
of view. One example is the projection of information for tracked objects, e.g. as
instruments or pointers, if the SAR-projector is extrinsically calibrated w.r.t. the
tracking system. By projecting the tracked position as well as the tracking quality
onto the scene, the user can focus on the respective task, e.g. marking points of
interest, without having to consult a secondary screen to check the visibility of the
tracked tool. For development purposes, this has been realized in this thesis and
is widely used in OP:Sense development.
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Further, physiological patient data or planning data such as trocar positions can
be projected, if the patient has been registered. However, it has to be expected that
projecting a multitude of information onto a confined surface leads to distractions
and therefore has adverse effects on cognitive load.

3.3.4. Projection-based registration

All cameras integrated in the supervision system and the SAR-projector need to
be extrinsically calibrated in order to establish a common coordinate system. As
noted by Bauer et al. [7], this requires a simple procedure which can be included
in the clinical routine in order to be applicable to real-world usage. Due to the
number of cameras of the proposed supervision system, a pairwise registration
scheme, e.g. based on a checkerboard, would require too much manual work for
calibrating the system. This is especially true in the domain of an OR, where a
high calibration accuracy is required, but the effort needs to be kept minimal.

To provide a simple and quick registration procedure, an active extrinsic calibration
procedure is proposed that projects features as artificial landmarks into the scene
using the SAR-projector. The 2D pixel position of each projected feature is stored
as well as its 3D positions as detected by each camera, thereby building a set of
known correspondences between all cameras and the projector. After collecting
a sufficient amount of correspondences, the extrinsic calibration of all cameras
and the projector as well as the calibration of the intrinsic projector parameters is
calculated using bundle adjustment.

This registration procedure can be run without the need for continuous user inter-
action which is required in many other registration methods e.g. for replacing the
checkerboard. The only required activity is to change the scene layout at specific
times during the registration procedure to enable projections at different heights.
This can e.g. be achieved by raising or lowering the OR table. Registration of opti-
cal tracking systems for navigation cannot be performed automatically, as these
cannot detect visible light in the scene. The proposed projection-based extrinsic
calibration method supports manual registration of such systems by reprojecting
the previously projected features, which can then be annotated manually e.g. using
a pointer. All manual annotations are then added to a correspondence list and are
therefore also processed by the bundle adjustment step.
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This chapter describes the realization of the system concept presented in section 3.
It starts with giving an overview of OP:Sense, the platform for research on surgical
robotics at the KIT IAR-IPR which has been co-developed throughout this thesis.
Components of OP:Sense that are used and integrated by this thesis are discussed
in terms of hardware and software. The system architecture is presented, including
information about the required data and interfaces that are needed to integrate
the proposed system with surgical robot systems.

The realization of the supervision system is outlined in terms of implementation
of the different camera subsystems and discussion of optimal camera placement
to maximize redundant coverage. The implementation of both the projection-
based registration process and the algorithm for forward propagation of semantic
labelling are presented in detail.

For the safety concept, the Shape Cropping algorithm is described, focusing on its
implementation on the main processor and the subsequent parallelization using a
GPU. This is followed by a description of the implementation and realization of
the different safety features, such as active and passive robot localization, detection
of impending collisions and continuous pose supervision.

Lastly, the system design of the SAR subsystem is described, taking into account
both the physical setup and the software implementation. General use-cases are
derived and their exemplary application to the OP:Sense platform is discussed.

4.1. OP:Sense

OP:Sense is a modular platform for research on new concepts for surgical robotics
that is being developed at the KIT IAR-IPR. While original development was based
on Windows and Matlab using a custom CORBA-based communication stack [124],
the system was later ported to Linux and ROS. As OP:Sense was developed during
the same time frame as this thesis was conducted, large parts of OP:Sense were
created or contributed in this thesis, concerning both the supervision system and
the general OP:Sense-architecture and components.

For further reference, a general overview about the architecture and implemen-
tation of OP:Sense using ROS has recently been published in the Springer book
Robot Operating System (ROS) - The Complete Reference [95] in the chapter ROS-based
Cognitive Surgical Robotics [12].
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4.2. Components

4.2.1. Software

To allow for a flexible combination and extension of the different parts of the
proposed system, its components are developed as lightweight, modular software
nodes. The open source Robot Operating System (ROS) [150] is used as both a
communication framework and ecosystem for development and debugging. After
initial prototyping in Matlab, all processing of 3D data is realized using the Point
Cloud Library (PCL) [159] whereas processing of 2D data is implemented using
the Open Source Computer Vision (OpenCV) library [17].

The Ceres Solver [1] is used for performing the bundle adjustment required for
the projector-based extrinsic calibration.

openFrameworks [196] is used for projecting information onto the scene and was
extended with a ROS-interface to allow querying transformations and receiving
instructions for graphical output via ROS, encoded e.g. as Scalable Vector Graphics
(SVG) markup.

4.2.2. Sensors

3D cameras The supervision system developed within this thesis is composed
of multiple 3D cameras, grouped into two independent subsystems as described in
section 3.1.2. The PMD camera subsystem consists of six [pmd]vision R© S3 cameras
that feature a lateral resolution of 64× 48 px and are connected and triggered via
a standard Ethernet connection. Additionally, a [pmd]vision R© CamCube 2.0 is
integrated with a lateral resolution of 204× 204 px, connected and triggered via
USB 2.0. The Kinect v1 subsystem consists of four Kinect v1 cameras with a lateral
resolution of 640× 480 px that are connected via USB 2.0.

Further, evaluation of the algorithms developed within this thesis was performed
based on a Kinect v2 system realized together with Beyl [11]. It consists of four
Kinect v2 cameras that offer a lateral resolution of 512× 424 px and are connected
via USB 3.0.

Optical tracking system The ARTtrack2 Optical Tracking System (OTS) by Ad-
vanced Realtime Tracking GmbH, Germany, is used in a six camera configuration.
It offers 6D tracking at 60 Hz for up to 20 rigid bodies fitted with retro-reflective
marker spheres, which are compatible with clinical tracking systems such as the
NDI Polaris series. Compared to the two-camera Polaris devices, the ARTtrack2
system offers a significantly higher tracking volume. Data provided by the ART
tracking system was available through OP:Sense.
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High precision measurement arm For obtaining high precision individual
measurements, a FARO platinum measurement arm by FARO, Germany, was used.
It can be fitted with either a ball probe or a laserline probe and is certified for a
measurement accuracy of up to 50 µm. As no drivers for Linux are available for
the measurement arm, a custom ROS node was implemented in Windows during
this thesis. This allows to stream all data acquired by the measurement arm, such
as probe position and laserline scanning, to ROS and thereby exposing the data to
the OP:Sense system.

4.2.3. Robotic systems

Two Light Weight Robot (LBR) 4 by KUKA, Germany, have been used in this thesis.
They feature seven Degrees of Freedom (DoF) and are equipped with torque-
sensors in each joint, which allows sensing of external forces. This is leveraged for
a so-called gravity compensation mode, in which the user can guide the robot by
hand, applying only minimal force. This mode will also be referred to as hands
on mode in the following. Low-level control of the robots was available through
OP:Sense.

To allow research into minimally invasive scenarios, OP:Sense offers a surgeon
console. Different standard laparoscopic instruments are available that have been
motorized and can be attached to the Light Weight Robot (LBR) and be controlled
via ROS [64].

As a proof of concept, the proposed system has also been integrated with the
MiroSurge system by DLR in the scope of the European research project Patient
Safety in Robotic Surgery (SAFROS).

4.2.4. Interaction modalities

GUI-based system control To offer an easy interface for both development and
usage of the system for research purposes, a modular Graphical User Interface
(GUI) has been developed within this thesis. It interfaces via ROS with various
components of both the general OP:Sense system and the proposed systems. It
allows to control the supported systems, e.g. start and stop the different camera
systems at a simple click, and visualizes their status. The GUI will be referred to
as system gui from here on. It is implemented as a website based on rosbridge.
As it is accessed via web browser, it allows full control of the system components
on both static computers/touchscreens and mobile devices such as tablets or
smartphones.

A 23 inch touch screen, the HANNS-G HT231HPB by Hanns-G, Taiwan, was in-
stalled for stationary usage of the system gui. It is connected to a dedicated Small
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Form Factor (SFF) PC that was configured to directly boot into displaying the sys-
tem gui, thereby enabling a comfortable one-click solution to visualizing system
information.

For non-stationary usage of the system gui, a Galaxy Note 10.1 2014 tablet by
Samsung, Korea, was available.

Projection system For Spatial Augmented Reality (SAR), a short-throw projec-
tor was integrated into the setup, the TH681 by Benq, Taiwan. It offers a resolution
of 1 920 × 1 080 px with a light output of 3 000 ANSI lumens. The focal length is
adjustable between 16.88 mm and 21.88 mm, which corresponds to a throw ratio,
i.e. ratio of distance to projection surface divided by projection width, of 1.15 to
1.5. As this allows for a wide projection area at short distances, the projector can
cover the whole operating table from a short distance.

As a deflecting mirror, a custom made front face mirror by G&P Optoelectronics,
Germany, was commissioned.

4.2.5. Servers

Control of all PMD cameras and processing of all resulting 3D data is performed
on a dedicated server. It includes an AMD Phenom(tm) II X6 1090T hexa-core
processor at 3.2 GHz, 12 GB of working memory and a NVIDIA GTX 480 graphics
card. The graphics card features 1.5 GB dedicated memory and supports the
parallel computing platform Compute Unified Device Architecture (CUDA) 2.0.

Processing of the raw depth data provided by the Kinect v1 cameras is performed
on the so-called Central Services server. It features an Intel Core i7 3770 processor
at 3.4 GHz, 8 GB of working memory and two NVIDIA GTX Titan graphics card.
Each graphics card features 6 GB dedicated memory.

For tasks that require little computational power while being restricted to a
small footprint, SFF PCs have been employed. The ZBOX nano AD10 by Zo-
tac, Hongkong, has been selected as basis for the Kinect v1 subsystem. At a small
footprint of 45× 127× 127 mm3, it features an AMD E-350 dual-core processor at
1.6 GHz and 4 GB of working memory. Connectivity is provided by both a USB 2.0
and a USB 3.0 host controller as well as a 1 Gbit Ethernet port.

The successor of this SFF PC, the ZBOX nano AD13 by Zotac, has been used for
the touch screen and for controlling the surgical instruments. At an even smaller
footprint of 37× 106× 106 mm3, it features an AMD E2-1800 dual-core processor
at 1.7 GHz and 4 GB of working memory.
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4.3. System architecture

4.3.1. Design goals

The proposed system has been designed with the following goals:

• Modularity: Components are realized as independent modules that focus on
a specific logical (sub)task and communicate via defined interfaces.

• Fault tolerance: In case of failure of single components, e.g. hardware or
infrastructure, the system degrades gracefully.

• Extensibility: Additional functionality in terms of hardware capabilities, e.g.
new sensors, and software functionality, such as interfaces to surgical robot
systems, can easily be added to the existing system.

• Spatial distribution: The sensors and processing hardware are spatially sepa-
rated in order to minimize the system’s footprint close to the situs.

4.3.2. Overview

The high level overview of the architecture of the proposed system and its main
components is shown in Figure 4.1. Directed data flow between components is
represented as solid arrows and annotated with the type of information that is
transferred on the according connection. Dashed arrows represent perception of
the world by 3D cameras, i.e. PMD cameras for the first level scene model and
Kinect v1 for the second level scene model.
Unlabeled connections between the system gui and other components allow for
the following interactions: Both supervision subsystems can be switched on or off
via the system gui, which also displays their current status. If the robot system
provides an according interface, as is the case for OP:Sense, the system gui can
also be used to switch between different robot control modes and visualize their
status.

4.3.3. Distributed system

The proposed system as well as all subsystems have been realized based on
ROS as a communication framework. Therefore, a short introduction into the
basic principles of ROS is necessary before further aspects of implementation are
discussed.

ROS provides a structured communication layer through which a peer-to-peer
topology of multiple so-called nodes can be established and dynamically modified.
Data is exchanged based on the publish-subscribe pattern via named topics, over
which messages of different types can be sent. While different network protocols
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Figure 4.1.: High-level overview of the system architecture and data flow.

are supported, all implementations of this thesis are based on TCP/IP. Connections
between different nodes are established based on a central naming service, the
ROS master, that maintains a list of active nodes and advertised topics. After a con-
nection has been established, data is exchanged directly between the participating
nodes without involvement of the master. Therefore, once a system is running,
the master does not represent a single point of failure. In ROS, spatial relations,
i.e. transformations, between different entities are represented using the so-called
tf mechanism. Based on pairwise transformations between named entities that
can be published by arbitrary nodes, a tf tree is maintained that can be queried for
arbitrary concatenated transformations.

In the proposed system, some nodes have physical dependencies which limit
them to certain hardware. Examples are the node controlling the PMD camera
subsystem, which needs to run on a machine that is directly connected to the
CamCube via USB and to the S3 cameras via network, and the projection node,
which needs to be executed on the SFF PC to which the projector is attached. All
other components can be executed on arbitrary machines as their required input
data is available via network. In case of hardware failures, this makes it possible
to switch affected nodes to a different physical machine without delay.

Further constraints and details of the distributed implementation will be discussed
below with the specific subsystems.
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4.3.4. Connection to surgical robot systems

As the field of surgical robotics is quickly developing and several new systems are
in a state of advanced research or close to commercialization (see section 2.2.1.4),
the proposed concept for safe and intuitive usage needs to be applicable to different
surgical robot systems.

To construct the safety zone and discern e.g. between correct and faulty robot
actions, the exact shape of the robot has to be known at any given moment.
Therefore, pose information for each segment needs to be available continuously
as well as CAD data for each segment of the robot, from which the mesh models
for the inner and outer hull are generated in an offline step. The pose of each
segment can be either directly provided by the robot control or calculated by the
proposed system based on a known kinematic model of the robot and the current
joint angles. The latter allows calculating the robot’s pose independently from the
robot control, thereby adding another layer of redundancy to the system.

Both methods have been realized during this thesis to connect to two different
research surgical robot systems:

• OP:Sense: A kinematic model has been implemented to calculate the pose of
each segment of the LBR based on its Denavit-Hartenberg parameters. The
joint angles are provided via the ROS network.

• MiroSurge: The full pose of each segment was provided by the robot control
over network via Remote Procedure Calls (RPCs).

For merely supervising the safety of the system without triggering a reaction in
case of adverse situations, only a unidirectional interface to the robot is required
through which the current pose is streamed (see Figure 4.2). For taking full
advantage of the safety features, a bidirectional interface is necessary so that
information such as the safety state can be provided or an emergency stop can be
triggered.

Figure 4.2.: Communication with surgical robot system: Robot pose data is
required, sending back the safety state is optional.
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4.4. Supervision system

4.4.1. Architecture

The supervision system as described in section 3.1.2 has been realized as a dis-
tributed system. Its network topology is shown in Figure 4.3 as an illustration of
the architecture.

The PMD subsystem consists of a dedicated server which controls all PMD cameras
and processes all acquired data. Six pmd[vision] S3 cameras are connected via
Ethernet on dedicated networks whereas the CamCube 2.0 is connected via USB.
The usage of dedicated networks prevents potential load problems on the general
ROS network from interfering with the safety-critical PMD camera subsystem.
In terms of the system design goals, it also increases the fault tolerance against
hardware failure and the modularity of the system.

Figure 4.3.: Network topology of the supervision system with the PMD and Kinect
v1 camera system as well as the standalone OTS ARTtrack2.

The Kinect v1 subsystem is realized as a distributed system within the proposed
system: It is based on two AD10 SFF PCs to which two Kinect v1 are connected
each. Processing of the acquired raw data is performed on the Central Services
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server. As the second level scene model, which is based on the Kinect v1 camera
system, is not safety-critical, latencies or frame drops in the Kinect processing
pipeline due to potential network overloads can be tolerated. Usage of the AD10
SFF PCs enables to transfer the acquired data via Ethernet to the processing nodes.
This allows for spatial separation between the sensors and the processing server as
Ethernet segments feature a higher maximum length and reliability than extended
USB cables.

Further, the standalone ARTtrack2 is connected via Ethernet to the main ROS
network.

4.4.2. Camera placement

The task of placing sensors to supervise a scene has been studied in various works.
Most recently, the PhD thesis of Hänel proposed different algorithms for achieving
optimal coverage by freely placing cameras in a 3D environment, taking into
account occlusions caused by static and dynamic obstacles. Hänel concludes that
compared to a random placement, optimal placement of cameras can double the
covered area; in comparison to simple heuristic approaches, optimal placement
still achieves better results. However, it is also noted that complex scenes, e.g.
including multiple rooms or complex obstacles, profit more from optimized sensor
placement than simpler scenes. Additionally, Hänel reports that in both exemplary
environments that were analysed in the thesis, for more than 75 % of the cameras
the optimal placement was found to be located at the boundaries of the respective
domain [52].

Both based on these findings and due to the spatial constraints of the laboratory in
which the OP:Sense system is developed, the camera systems of this work needed
to be realized as a ceiling mounted camera system where the cameras are located
at the boundaries of the ROI around the OR table.

For ceiling-mounted cameras, Figure 4.4 illustrates the occlusions that can be
caused by either personnel standing between camera and operating table or
the OR lamp being in a low position. It is based on a person height range of
1.68 m – 1.86 m, which corresponds to the majority of male US citizens (10% – 90%
percentile) at an age of 20 years [36], and also is in line with the average European
male height of 1.77 m [44]. The operating table is shown in an even position at a
height range of 0.66 m – 1.1 m, with the OR lamp at the Central Illumination distance
of 1 m.

For actual interventions, there are countless more variables that influence potential
occlusions: number, position and pose of persons around the operating table, the
shape of the operating table itself (which can be raised, lowered and angled in
segments), the position of the OR lamp(s), etc. However, the simple illustrations
of Figure 4.4 serve to show that there is an equilibrium of camera mounting height:
Mounting the cameras in a higher position can decrease occlusions by persons, but
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Figure 4.4.: Occlusions caused by personnel and OR lamp, illustrated for one
camera. Green areas have clear Line of Sight (LoS), yellow areas might
be occluded, red areas are not visible for the camera. Striped areas
indicate volume where objects might be located, e.g. operating table
height might be raised or lowered. Left: Occlusions caused by person
standing between camera and OR table; right: Occlusions caused by
OR lamp and operating table.

Figure 4.5.: Visualization of the camera poses relative to the OR table. Poses of
PMD cameras are depicted in orange, Kinect v1 cameras in red and
Kinect v2 cameras in gray. The coordinate system between both robots
represents the origin of the optical tracking system ARTtrack2. Shapes
of the camera pose markers represent the FoV of the corresponding
camera.
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increases the possibility of occlusions by the OR lamp(s) and vice versa. Therefore,
cameras have been mounted as depicted in Figure 4.4 at a height of 2.15 m – 2.25 m
which leaves enough space to walk comfortably below each camera and offers a
high coverage of the scene.

Figure 4.5 shows the poses of all cameras of the realized camera systems as well
as those of the Kinect v2 cameras and the origin for the marker-based tracking
system.

Figure 4.6.: Partial view of the realized supervision system with first level 3D cam-
eras ([pmd]vision S3, blue), second level 3D cameras (Kinect v1, red,
with Kinect server, orange) and the optical tracking system (ARTtrack2,
green).

Figure 4.6 shows a part of the realized supervision system. It illustrates the
physical size of an AD10 SFF PC (bordered orange), to which two Kinect v1
cameras are connected.

4.4.3. ToF subsystem

All cameras are controlled by a dedicated server that triggers each camera and
performs light preprocessing on the raw data. It publishes the resulting point
cloud as well as amplitude and depth images to the ROS network for further
processing by high-level nodes.

4.4.3.1. Trigger modes

The pmd[vision] S3 cameras support different modes for image acquisition: free-
run, hardware trigger and software trigger. In free-run mode, the camera acquires
range images at maximum speed which can then be polled by the processing
software. This is not feasible for systems where multiple cameras need to op-
erate in the same volume, both for reasons of crosstalk (see section 2.2.2.3) and
synchronization.

To enable optimal synchronization between multiple [pmd]vision S3 cameras, a
hardware trigger is supported. This allows to physically connect the Ready pin
of one camera, which then servers as the master camera, to the TriggerIN pins
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of one or multiple slave cameras. Triggering the master camera (via software)
automatically triggers the connected slave cameras, either at the same time as the
master (trigger on negative edge) or consecutively (trigger on positive edge).
While this optimizes the synchronization, it has two major drawbacks: First and
most severe, a component failure affecting the master camera also affects the
slave cameras. Both a failure of the master camera itself and a failure of the
network connection, via which the master camera is triggered, would result in
complete loss of information of the master camera itself and all connected slave
cameras, as they would not be triggered any more. Second, both triggering cables
and Ethernet cables are now necessary for each camera. This results in a mesh
network topology that is a mixture between the original star topology and a ring
topology. It decreases the flexibility of the physical system setup and increases the
probability of error, as failure of one connection results in the loss of at least one
camera.

Due to the drawbacks of both free-run mode and hardware trigger, the final
system was realized using software trigger. This allows for a clean and flexible
star topology of the network, reduces the amount of connections and thereby
the potential points of failure, and provides full flexibility in triggering. In a
dedicated network where all traffic is controlled by the PMD server, the loss of
timing accuracy as compared to using a hardware trigger is minimal.

4.4.3.2. Time and frequency multiplexing

ToF cameras are prone to interferences due to their sensing principle as described
in section 2.2.2.3. Therefore, a time and frequency multiplexing scheme has been
devised to prevent crosstalk between all PMD cameras.

As the [pmd]vision S3 camera only provides three different modulation frequen-
cies, the six [pmd]vision S3 used in the supervision system are split into two logical
groups. In each group, all three cameras are configured to different modulation
frequencies and triggered at the same time. This results in three entities that need
to be time-multiplexed, namely two S3 camera groups and the CamCube. Using
a fixed configuration of the cameras, the total time for acquiring each frame was
measured and analyzed to determine the initial time span during which the cam-
era actively emits light. Based on these measurements, different time multiplexing
schemes have been implemented throughout the course of this thesis as depicted
in Figure 4.7:

• Simple alternating: Both S3 groups are triggered alternately with the Cam-
Cube triggered in between. The CamCube can be configured to arbitrary
modulation frequencies.

• Synchronized alternating: Both camera groups are triggered alternately with
the CamCube synchronized to both groups. The CamCube needs to be set to
a modulation frequency which is different from the modulation frequencies
used by the pmd[vision] S3 cameras.
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Figure 4.7.: Different triggering schemes for PMD camera subsystem. High edges
represent the time that a camera is actively emitting light, stroked
appendices illustrate the remaining time for transfer and processing.

• Serial: The camera groups and the CamCube are triggered serially. The
CamCube can be configured to arbitrary modulation frequencies.

The serial triggering scheme was selected as best candidate as there is the least
amount of time where no camera emits any light, i.e. it offers a maximum amount
of information acquired in a minimal amount of time.

4.4.3.3. Low-level preprocessing of raw data

ToF cameras exhibit a special characteristic of noise, the flying pixels that occur at
boundaries between foreground and background (see section 2.2.2.3). Different
methods have been proposed to correct the distance information at the concerned
pixels, ranging from simple median filtering on neighboring pixels to more in-
volved filtering pipelines that model the different return paths [104]. However,
these methods come at a computational cost and are mostly required if only one
camera is available as single data source and therefore a maximum amount of
information needs to be extracted out of each measurement. As the PMD camera
system consists of multiple cameras monitoring the scene from different points of
view, this thesis implements an approach to detect and remove such outliers in
the raw data of each camera.

In general, it is not possible to detect flying pixels solely based on their amplitude.
Instead, an edge detection filter is employed for identifying flying pixels as they
occur at the boundaries of objects by definition. This thesis uses a combination of
Sobel operators that calculate the gradient of the image in different directions as
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depicted. For visualization, an example based on a depth image acquired by the
the CamCube is shown in Figure 4.8.

Figure 4.8.: To detect flying pixels, Sobel operators are applied to the depth image
in different directions (1st, 2nd image). Results are combined (3rd image),
binarized and dilated, resulting in a mask (4th image) which is then
applied to the original data.

Further, a sliding window with a size of two frames is employed to temporally
smoothen the data acquired by the PMD cameras. While pixels that are flagged as
invalid by the PMD driver are removed, no other filtering, e.g. based on amplitude
or spatial coherence, is performed by default during the low level preprocessing
in order to retain the according data for higher level applications.

4.4.3.4. Operating modes

Due to the nature of camera systems in general, short exposure times result in a
lower SNR than longer exposure times, but are more suited for capturing non-
static scenes. This holds especially true for ToF cameras, where each range image
is calculated based on multiple consecutive sub-images and differences between
the sub-images result in incorrect reconstruction of the 3D data.

To enable high-level nodes to choose between a higher frame rate and a higher
quality while encapsulating the actual implementation, two different operation
modes of the PMD subsystem have been implemented that can be switched at
runtime:

• Performance mode: The cameras are configured to shorter integration times,
i.e. 750 µs for the pmd[vision] S3 and 1 500 µs for the CamCube 2.0, and are
triggered using time- and frequency multiplexing. Extended modes such
double frequency acquisition are disabled.

• Quality mode: The cameras are configured to longer integration times of
4 000 µs for each camera and are triggered serially. Double sampling mode
for increasing the SNR and double frequency mode for increasing the unam-
biguity range are enabled for the pmd[vision] S3 cameras. Both modes are
not supported by the CamCube 2.0.
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Figure 4.9.: Visual comparison of a scene acquired in quality mode (left) and per-
formance mode (right) with removal of flying pixels disabled (top) and
enabled (bottom).

Figure 4.10.: Top down view of a virtual representation of the medical robotics
laboratory at IAR-IPR acquired by PMD camera system.
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As a visual comparison of the result of the different operating modes and the effect
of filtering for flying pixels, Figure 4.9 shows a side view of a scene captured by
the full PMD subsystem. The scene consists of an OR table on which a phantom is
placed and to which an LBR is attached. Figure 4.10 shows the resulting virtual
scene acquired by all cameras of the PMD camera system.

4.4.4. Kinect v1 subsystem

The Kinect v1 subsystem consists of four Kinect v1 cameras. Contrary to the
industrial grade PMD cameras, the Kinect v1 offer no configuration options.
Instead, they output a high-resolution range image with color information at their
maximum frame rate. Figure 4.11 shows the resulting virtual scene acquired by all
cameras of the Kinect v1 camera system.

Figure 4.11.: Top down view of a virtual representation of the medical robotics
laboratory at IAR-IPR acquired by Kinect v1 camera system.

4.4.4.1. System design

The Kinect v1 provides raw data depth and color streams at a resolution of 640×
480 px and a frame rate of 30 fps via USB 2.0. As the distance measurement for each
pixel is encoded as an 11 bit value, the raw depth stream requires a theoretical
bandwidth of 640×480×11 bit×30 Hz = 101 376 000 bit/s ≈ 96.7 Mbit/s. In the raw
color stream from the Bayer sensor, each pixel is encoded as an 8 bit value, which
results in a bandwidth requirement for the color stream of 640×480×8 bit×30 Hz =
73 728 000 bit/s ≈ 70.3 Mbit/s. In total, the required bandwidth for the raw data
streams is 96.7 Mbit/s+70.3 Mbit/s = 167 Mbit/s plus communication overhead.
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After raw data from a Bayer sensor is transformed into a full RGB image, each pixel
contains the information of three color channels and therefore requires 3× 8 bit =
24 bit of memory per pixel. Each point of a XYZRGB pointcloud therefore requires
3 × 32 bit = 96 bit for three float values representing the point position, plus
24 bit for the color information. For a pointcloud at the full Kinect v1 resolution,
this amounts to a bandwidth requirement of 640× 480× (24 bit + 96 bit)× 30 Hz =
1 105 920 000 bit/s ≈ 1 054.7 Mbit/s.

Even without acknowledging protocol overhead, this bandwidth requirement
exceeds the available bandwidth of 1 024 Mbit/s provided by a standard Gbit/s
Ethernet connection. To enable transferring the full Kinect v1 data without de-
creasing the frame rate or the resolution, a streaming setup was realized which
transfers the raw data of the Kinect v1 over Ethernet using ROS. The calculation of
the resulting pointcloud per camera is thereby shifted from the SFF PC, to which
the camera is directly connected, to the Central Services server on the network.
This lowers the computational load of the SFF PCs and nowadays would allow to
use fanless PCs, which complies to the requirement of not disturbing the laminar
air flow over the OR table (see section 3.1.1.1).

Due to the protocol overhead of USB and reserved bandwidth for the operating
system, the Kinect v1 requires over 50% of the practically available USB 2.0 High
Speed bandwidth. This means that each Kinect v1 has to be connected to a
dedicated USB 2.0 host controller. However, even with the small size of the
selected SFF PCs, it is desirable to keep their number to a minimum in order to
prevent unnecessary clutter. For this reason, the AD10 SFF PCs were deliberately
selected based on both their form factor and their connectivity: With one USB
2.0 and one USB 3.0 controller, they allow to connect two Kinect v1 cameras
simultaneously per USB and stream the raw data over the 1 Gbit/s Ethernet port
into the network.

4.4.4.2. Human Tracking

For human tracking, the approach of Beyl [9, 10] was employed in combination
with the Kinect v1 camera system. Human tracking information is streamed into
the ROS network as joint positions and PointCloud2 messages containing the
full body pointcloud of each tracked user. For forward propagation of semantic
labelling (see section 4.4.7), the human tracking serves as ground truth.

4.4.5. Kinect v2 subsystem

Like the Kinect v1, the Kinect v2 is officially supported only with the Windows
operating system. For both cameras, unofficial drivers for Linux have been avail-
able shortly after the commercial availability of the camera; these are used in the
Kinect v1 camera system described above. However, the original body tracking
algorithms developed by Microsoft are not available when using open drivers
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and open source implementations of body tracking at non-frontal views have only
recently reached maturity.

For the Kinect v2, it was therefore desired to enable access to the full functionality
of the official Kinect v2 SDK, i.e. color and depth data as well as body tracking
based on the original algorithms trained by Microsoft, for further processing
in ROS. A custom, windows-based ROS node was implemented in this work
that accesses the camera using the official SDK, processes the data and makes it
available in ROS as native messages.

This serves as the basis for a Kinect v2 camera system with four cameras that
was realized by Beyl [9]. In this thesis, the Kinect v2 camera system was used in
addition to the PMD camera system and the Kinect v1 camera system to evaluate
proposed algorithms and to serve as a comparison system. It is however not
applicable to the scenario of this work, as the Kinect v2 cameras can exhibit severe
interferences in the presence of two or more cameras targeted at the same region
due to a lack of synchronization [9]. This effect is shown in Figure 4.12.

Figure 4.12.: High-frequency interferences regularly observed by operating four
Kinect v2 cameras in the same volume. Distortions are visible at the
marked parts of the robot.

For the depth measurements acquired by the uppermost and lowermost pixel
rows of each Kinect v2, there is no color information available due to the different
aspect ratios of the color sensor and depth sensor. These depth measurements
have been colored pink. Figure 4.13 shows the resulting virtual scene acquired by
all cameras of the Kinect v2 camera system.

4.4.6. Projection-based registration

Both in the proposed system as well as in current operating rooms, various devices
are employed for acquiring 3D information and/or displaying information based
on 3D information: 3D cameras (PMD, Kinect), projectors, navigation systems
(ARTTrack2) and potentially other devices (such as the FARO measurement arm).
In order to exchange geometric data, all devices need to be registered to a common
reference frame.
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Figure 4.13.: Top down view of a virtual representation of the medical robotics
laboratory at IAR-IPR acquired by Kinect v2 camera system.

A typical registration process for multi-camera systems contains the following
general steps:

1. Feature detection: Features in the scene are detected based on the image
acquired by each camera.

2. Correspondence estimation: Correspondences are estimated between the fea-
ture detections of multiple cameras.

3. Camera registration: Based on the estimated correspondences, the pose of
each camera is estimated either w.r.t. each other or to world coordinates.

For the registration of 2D cameras, feature detection is often performed by introduc-
ing artificial features such as a calibration object with known geometric properties.
The known geometric properties enable to estimate the 3D pose of the features
w.r.t. the camera. Similar methods have also been applied to RGB-D camera sys-
tems by combining the texture-based feature detection of a checkerboard pattern
with the depth-based distance measurements of each detected feature [10, 90].
However, registration methods for which a registration object has to be manually
placed in different fixed positions rely heavily on human involvement and are
often cumbersome processes. Approaches for RGBD camera registration have
recently been proposed that allow registration based on a checkerboard which is
dynamically moved through the scene [129] or that completely eliminate the need
for calibration objects and only require unstructured motion in the scene [122].

However, these registration methods are only targeting camera registration and
generally do not allow for registration of other devices, such as projectors or,
in the case of registration methods without fixed positions of the calibration
target, optical tracking systems. Concerning the specific task of projector-camera
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calibration, e.g. for structured light based scanning systems, different methods
have been proposed, e.g. by Moreno et al. who estimate the intrinsic and extrinsic
parameters of both camera and projector based on projecting structured light
patterns onto a checkerboard [127]. However, this also requires careful manual
positioning of the checkerboard as well as the usage of a high resolution camera to
accurately reconstruct the intrinsic parameters of the projector.

For this reason, a projector-based registration method is proposed that (i) replaces
the need for calibration targets such as a checkerboard, (ii) can perform automatic
registration of multiple cameras and (iii) allows for additional manual registration
of e.g. optial tracking systems or components such as the FARO measurement arm.
As features are projected serially, this methods also eliminates the correspondence
estimation step.

4.4.6.1. Registration workflow

The registration method consists of three main stages as depicted in Figure 4.14.
After initialization, the scene needs to be arranged so that there is a non-cluttered
surface which is at least partially visible from all cameras, lies inside the projection
frustum of the projector and is at least partially covered by any marker-based track-
ing system which need to be registered. In the clinical scenario with the proposed
setup, the OR table can be used as projection surface as it fits all these requirements.
As last part of the scene arrangement, the user interactively determines the desired
projection area as a subset of the full area covered by the projector. Moving lines
are projected into the scene that allow the user to iteratively set the boundaries of
the desired projection surface as depicted in Figure 4.15.

Figure 4.14.: Logical flow of the registration procedure. Steps highlighted in blue
require manual actions of the user.
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Figure 4.15.: Exemplary steps of the realized registration procedure. The user
interactively determines the projection area by setting its boundaries
via lines projected into the scene, as visible on the OR table. After
all boundaries are set, the resulting projection area is shown for
confirmation.

Figure 4.16.: Features are projected into the scene inside the user-determined pro-
jection area (left). For non-camera devices such as an OTS, features
can be annotated manually (right).
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After the scene is arranged, all cameras capture the scene without illumination
by the projector for several seconds. For each camera, an averaged scene repre-
sentation is calculated over all measurements both in 3D as a reference point cloud
and as a 2D reference image. Afterwards, features are projected as filled circles
one after another. Again, the scene is captured and averaged by each camera,
resulting in a 3D point cloud and a feature image with the projected circle. To
localize the feature position, the differences between reference image and feature
images are calculated and thresholded, resulting in a mask of the projected circle
in 2D camera pixel coordinates. The feature location can then be calculated as the
center of the circle based on the coordinates of the points of the reference point
cloud that correspond to the 2D circle mask.

While the camera feature acquisition described above does not require input by
the user, the registration of other systems needs to be performed manually. The
features are projected to the same locations as before and can be manually anno-
tated with a modality depending on the specific device. In this thesis, annotations
with the FARO arm were performed by positioning the measurement tip at the
feature position in the scene and confirming by pressing a button on the device.
The ARTtrack2 OTS was registered by positioning an NDI pointer to the feature
location and capturing the position via button press in the system gui displayed
on a mobile device (see Figure 4.16).

This procedure can be iterated multiple times with different scene arrangements,
i.e. by adjusting the OR table height, to increase the number of annotated features.
After the last iteration, the pose of each camera or device as well as the intrinsic
parameters of the projector are calculated using bundle adjustment.

4.4.6.2. Bundle adjustment

Triggs et al. define bundle adjustment as “the problem of refining a visual reconstruc-
tion to produce jointly optimal 3D structure and viewing parameter (camera pose
and/or calibration) estimates.” [178]. This optimization problem can be formu-
lated as a non-linear least squares problem, using the squared Euclidean norm of the
reprojection error of each feature in each camera as the optimization criterion.

In this thesis, the devices which need to be registered to a common reference frame
can be split into two different categories:

• Devices for which a static intrinsic calibration can be assumed, such as
cameras with a fixed focal length, and navigation systems as the ARTtrack2
or NDI Polaris devices.

• Devices with intrinsic parameters that depend on the current device configu-
ration, such as cameras or projectors with a variable focal length that can e.g.
be adjusted by the user via a zoom ring.
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Projection models In order to perform bundle adjustment, a model for the
reprojection error, the residual, needs to be established for each device. In case of
devices with static intrinsic calibration, the component-wise residual ~e can simply
be modelled as

~e = (R · ~p+ ~t)− ~o, (4.1)

where p denotes the predicted point in the camera coordinate system,R the camera
rotation matrix, ~t the camera translation vector and ~o the observed point in world
coordinates. Therefore, only the extrinsic parameters of the according devices
need to be optimized.

For devices of the second category, both intrinsic and extrinsic parameters need to
be optimized. Especially in a setting where multiple persons interact with a system
on a daily basis, it cannot be asserted that intrinsic parameters were not changed
since a previous calibration. For this reason, an extended model is required for
calculating the residuals.

The wide-angle projector is the only device with variable intrinsic parameters
used in this thesis. Similar to cameras, projectors consist of an optical system
that establishes correspondences between coordinates of 3D points in a scene and
pixel coordinates on a chip. Therefore, the standard pinhole camera model with
additional distortion coefficients as given in Appendix B can also be used to model
the optical properties of a projector.

Due to the inverted nature of a projector compared to a camera system, residuals
are calculated in pixel space as the difference between pixel coordinates that were
projected into the scene and the reprojected pixel coordinates that correspond
to the 3D coordinates of the projection in the scene, based on the intrinsic and
extrinsic parameters of the projector.

The registration problem is then modeled as a bundle adjustment problem, i.e.
a minimal least squares problem. The residual, i.e. the reprojection error, for
all observations by cameras, the ARTtrack2 and FARO, is calculated as given in
Equation 4.1, whereas the residual for the projector is calculated as ~e = (u, v)> −
(px, py)

> with (u, v)> calculated as given in Equation B.6 and (px, py)
> denoting the

pixel coordinates of the originally projected point. The ceres solver is then applied
to solve the minimal least squares problem.

Outlier handling For optimizing the registration result, it is desirable to auto-
matically detect and exclude outliers which can either result from the automatic
feature extraction or from erroneous manual annotation, i.e. with the FARO arm
or the ARTtrack2 system. There are multiple possibilities for outlier handling:

• Prior removal: Before the bundle adjustment problem is modelled, outliers
are detected and rejected based on the known geometrical properties of the
projected features. If features were e.g. projected in a grid arrangement on a
flat surface such as the OR table, the detected features can be mapped onto a
plane and checked for consistency with the projected grid.
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• Weight adjustment: All features are used to construct the bundle adjustment
problem. The influence of outliers is mitigated by an according cost function.

• Statistical removal: After solving the bundle adjustment problem based on all
detected features, features whose residuals fall outside of a certain statistical
variation are removed and the bundle adjustment problem is solved again
with the smaller feature set.

Contrary to the latter options, prior removal of outliers includes assumptions
about the underlying spatial distribution of the detected features. To avoid this,
weight adjustment and iterative removal of outliers have been combined, using
one standard deviation of the mean as threshold for outlier removal in combination
with an absolute threshold of 50 mm.

4.4.6.3. Implementation

The projection based registration has been implemented as a modular system in
which a central registration controller node controls an arbitrary amount of camera
nodes as depicted in Figure 4.17. Control messages are distributed via a shared
control topic and include both control commands and a specific identifier for each
projected point.

Figure 4.17.: Realization of the registration procedure based on ROS.
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Based on this information, each camera node performs feature detection and sends
back each detected feature’s coordinates to the registration controller via service
calls. The manual device registration is performed similarly with the difference
that the user triggers the service call when the according position is acquired by
the device.

Using ROS, the camera nodes are distributed to different servers based on the
network topology, e.g. the nodes feature detection for the Kinect v1 cameras are
run on the Central Services server in order to keep network load low.

Due to the modular design, no prior knowledge about the amount of cameras or
devices to be registered is required; rather, bundle adjustment is performed for all
cameras and devices that reported detections.

4.4.7. Forward propagation of semantic labelling

As motivated in section 3.1.4, it is desirable to annotate the first level scene model
with semantic information obtained by the second level scene model. This problem
can be generalized as follows: Given two independent data streams with a known
mapping between each other, where one data stream contains a known ground
truth in the form of semantic information and the other data stream has desirable
characteristics such as a lower latency, higher frame rate or higher robustness,
establish a forward propagation of the semantic information. The proposed algo-
rithm can therefore be regarded as a model-free tracking algorithm which is based
on a delayed ground truth.1

While the proposed algorithm will be detailed with and is based on the supervision
scenario given in this thesis, with the PMD camera system acting as the low-latency
data stream and the Kinect v1 system providing the labelling i.e. of human tracking,
it is not tailored to this application implicitly or explicitly. Rather, as a model-free
algorithm that processes an external ground truth, it is designed to be adaptable
to applications with different combinations of tracking tasks and modalities with
the only requirement that a mapping between the modalities is known.

To stay consistent with the supervision scenario and allow for easier reading, in
the following the data source for the ground truth will be named Kinect camera,
the source for the low-latency data stream will be named ToF camera and the
tracking application will be named human tracking.

1This section as well as section 5.2 is based on a paper published in the scope of this thesis, titled
Continuous Pre-Calculation of Human Tracking with Time-delayed Ground-truth [134], which was
presented at the 12th International Conference on Informatics in Control, Automation and Robotics
(ICINCO). After selection as one of the best conference papers, it was invited for publication in
the Lecture Notes on Electrical Engineering by Springer, where a revised and extended version is
due to be published with the title Model-free (Human) Tracking Based on Ground Truth with Time
Delay [135]. Parts are quoted verbatim.
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A similar approach to model-free tracking is proposed by Teichman et al. [175]
who study model-free tracking with RGBD sensors. Their work focuses on track-
ing of deformable objects based on initial segmentation provided by the user, with
the goal of simplifying the collection of large training data sets for object classifi-
cation by removing the need for manual annotations on each frame. Contrary to
this thesis, their approach makes use of color information for segmentation and
forward propagation, which is not applicable to ToF cameras, and does not allow
for correction of tracking by a delayed ground truth.

4.4.7.1. Use cases

Based on the general definition of the algorithm given above, different use cases
are defined:

• Latency minimization: Provide semantic labelling with a lower latency than
that of the original data stream.

• Optimization of tracking robustness: Continuously provide semantic labelling
for each frame, even if the ground truth is intermittently lost.

Both use cases have been realized in the scope of this thesis. For the latency mini-
mization scenario, human tracking provided by one or more Kinect v1 cameras
from the second level supervision system is used as ground truth and different
pmd[vision] S3 cameras of the first level camera system provide the low latency
data stream. Optimization of tracking robustness was evaluated using human
tracking provided by the full second level Kinect v1 camera system as intermittent
ground truth and the full first level PMD camera system as robust data stream.

A further, third use case is frame rate optimization, where a high-speed ToF camera
is used to perform forward calculation of less frequently available ground truth
to enable semantic labelling with a higher frame rate. While a realized prototype
using a Kinect v2 and an Argos3D P100 showed positive results [135], this was not
expanded further.

4.4.7.2. Processing pipelines

In the proposed algorithm, two different processing pipelines are executed in
parallel (see Figure 4.18): The precalculation pipeline performs processing of the
data stream provided by the ToF camera as well as forward propagation of ground
truth, which is regularly updated by the second processing pipeline. Therefore,
for each incoming frame, a tracking estimation is directly calculated. Human
tracking information provided by the Kinect camera is processed in the ground truth
processing pipeline which updates both the ToF tracking state and a background
model based on the ground truth.
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4.4. Supervision system

Figure 4.18.: High-level structure of the two processing pipelines: The precalcula-
tion pipeline (left) processes all ToF data and precalculates a tracking
estimation based on the latest available updated ground truth, which
is injected by the ground truth processing pipeline (right).
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ToF Processing Different types of data are associated with the ToF data in each
time step: The source data acquired by the camera, i.e. the 3D point cloud, the
amplitude image, the depth image and the acquisition time, as well as information
calculated based on source data, such as a flow field, a tracking probability map
and geometric information about tracked targets. In the following, all this data
will be referred to as ToF frame. During processing of each ToF frame, it is necessary
to preserve the pixel-to-point correspondences between the 2D image domain
and 3D space, e.g. between amplitude image and the point cloud. Therefore, the
structure of the point cloud needs to be preserved and no filtering can be applied
that alters the original point cloud.

Figure 4.19.: Structure of the precalculation pipeline that processes ToF data to cal-
culate a tracking estimate. Step 1: The flow field between the current
and previous amplitude map is calculated by 2D optical flow. Step 2:
Based on the flow field and the previous tracking probability map, a
current tracking probability map is calculated. Step 3: The tracking
probability map is refined using information from the background
model as well as geometric and semantic information, resulting in the
extended tracking map that contains the estimated semantic labelling.
Step 4: The extended tracking map can be applied to the original
point cloud to segment a point cloud of the user.

The precalculation pipeline for processing ToF data is visualized in Figure 4.19.
After transforming the received point cloud into a shared coordinate system and
calculating the flow field between the previous and current amplitude map, the
preprocessed ToF data is stored into a ring buffer. A first estimate of the current
semantic labelling, e.g. tracked target(s), is calculated in image space based on
the previous probability map and the flow field. It is then refined using the
background model and spatial information encoded in the depth map in order to
filter false positives and prevent false negatives. The resulting extended tracking
map can then be applied to the original point cloud to segment a point cloud
representing the user’s body.
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Figure 4.20.: Forward propagation of ground truth in the ToF frame ring buffer.
Upon arrival of a new ground truth frame, the corresponding ToF
frame is identified and correspondences are calculated. The updated
ground truth is then propagated forward to the last received ToF
frame based on the stored flow fields.

Ground Truth Processing Like ToF data, incoming point clouds that corre-
spond to tracked humans are first transformed into the shared coordinate system.
As depicted in Figure 4.20, the closest matching ToF frame is identified in the
ring buffer based on the acquisition time. The previously calculated tracking
probability map of the ToF frame is then updated with the known ground truth,
based on the correspondences between the ground truth point cloud and the point
cloud of the ToF frame. The ToF frame is marked as a key frame, as the probability
map is now based on the known ground truth for this exact frame, in contrast
to being calculated from the probability map of a previous ToF frame. Using the
accurate tracking probability map and the corresponding depth data, an update
of the background model is then performed. The new information, which has
now been introduced in the form of an updated tracking probability map, needs
to be propagated forward through the ring buffer in order to be taken into ac-
count on the arrival of the next ToF frame. This forward-propagation is iteratively
performed based on the flow fields stored in each ToF frame.

4.4.7.3. Background modelling

While most information is stored and processed on a frame-by-frame basis, some
information needs to be modelled as global components that represent the state of
the scene. One of them is the background model, which is updated whenever new
ground truth is processed.

The standard OpenCV implementation of the background model, based on the
works of Zivkovic and van der Heijden [199], has been used and extended for
taking advantage of the specific data flow of this algorithm. A masking capability
has been implemented that allows to restrict the update of the background model
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to certain parts of the scene. The updating of the background model was split
into two different steps to decouple the update of the background model from the
actual background subtraction step.

The extended background model is then used as follows:

• Model update: Upon arrival of a new ground truth frame, the background
model is updated based on the depth map of the corresponding ToF frame,
using the tracking probability map as a mask to prevent the tracked user
from being incorporated into the background model. Thereby, the common
problem of slowly incorporating non-moving persons or entities into the
background model is eliminated.

• Foreground detection: Forward propagation of the tracking probability mask
based on flow fields often introduces errors, such as false positives. There-
fore, a foreground mask is calculated for each new arriving ToF frame by
applying background subtraction onto its depth map. During the calculation
of the extended tracking map (as depicted in step 3 of Figure 4.19), the fore-
ground mask is then used to filter potential false positives from the tracking
probability map.

4.4.7.4. Processing steps

Optical Flow Calculation The original TV-L1 algorithm proposed by Sánchez
Pérez et al. [161] was used to calculate optical flow between the amplitude maps
of two consecutive ToF frames. In contrast to calculating optical flow based on
RGB images, texture of objects does not influence the optical flow calculation
based on amplitude images. While this is a disadvantage in applications where an
accurate tracing of pixel trajectories is desired, it is of benefit in this algorithm. For
example, a uniform object that rotates around its own axis will be detected as non-
moving in the amplitude-based flow field, as the previously occluded back of the
object consists of the same material as the front and exhibits the same reflectivity.
Therefore, the corresponding areas of the probability map stay associated with the
whole object, resulting in correct classification.

Tracking Probability Propagation In each ToF frame, the probability that a
certain pixel belongs to a tracked human is stored in a 2D probability map. On the
arrival of each ToF frame at time t, its probability map mt is calculated based on
the current flow field applied to the previous probability map mt−1. Each pixel pi
in mt−1 with a positive probability value is thereby projected onto a new location
p′i in mt, with the probability value being split onto multiple target pixels based
on their L2 distance to p′i in case p′i has non-integer coordinates. Further, the total
number of tracked targets is stored as part of the global tracking state.
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4.4.7.5. Tracking Estimation

While the forward propagation of the tracking probability map by flow fields is an
efficient way of estimating the tracking probability map for new ToF frames, it can
also become a source of errors as the optical flow calculation parameters need to be
balanced between accuracy and speed requirements. Working with low resolution
ToF cameras, false negatives have regularly been observed concerning human
extremities, such as arms and head, which were lost during forward propagation.
On the other hand, false positives have been observed if e.g. a person closely
interacts with an object, leading to the object being marked as tracked in the
tracking probability map.

Therefore, specific steps have been introduced to first refine the tracking estimate
and then reject outliers:

Tracking Refinement Stage The correction of false negatives, such as non-
detected extremities, is performed based on the depth map of the ToF frame.
Connected probable tracking regions ri are segmented out of the binarized tracking
probability map and their center of mass mi is calculated. For all mi, a flood fill
operation is then performed on the depth map to connect regions with local
continuity in 3D space. Thereby, an extended tracking region r′i is obtained for
each connected region ri.

Outlier Rejection Stage Both the previous tracking refinement stage and the
general forward propagation may have introduced false positive detections. To
reject these outliers, the total number of potential tracked regions is checked
against the number of tracked objects. If there is a discrepancy, pairwise similarity
comparisons are performed between each tracked region of the previous frame and
potential tracked regions of the current tracking probability map. Using both 2D
and 3D similarity metrics, the best fitting tracked regions are confirmed as tracking
estimates. As the last refinement step, background subtraction is performed as
described above to filter remaining outliers. The resulting extended tracking map
can then be applied to the original point cloud of the ToF scene, resulting in the
estimated full body point cloud of the users in the scene.

4.4.7.6. Application to supervision system

The proposed algorithm is designed to operate on data streams from single cam-
eras as it relies on 2D calculations. For a multi-camera system, multiple instances
are be executed in parallel. Figure 4.21 shows the system architecture realized
for performing full forward propagation of the human tracking information with
six PMD cameras: The ground truth, which is obtained from the human tracking
system (see section 4.4.4.2), is accessed by six independent instances of the forward
propagation algorithm. Each instance processes data from a different ToF camera
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and is executed as a standalone ROS node. Each node independently performs
forward propagation to estimate a tracking probability map as described above,
which can either be used to segment the full body point cloud of the tracked
human(s) in the scene or to semantically label the PMD point clouds.

As the result, the fused multi-camera ground truth that represents the user body
point cloud perceived by the second level camera system is propagated forward
to a fused multi-camera tracking estimation of the user body point cloud based
on the first level camera system. In the context of this thesis, this is employed to
minimize the latency of tracking and improve the tracking robustness.

Figure 4.21.: System architecture of the forward propagation for semantic labelling
applied to the supervision system.

4.5. Safety concept

4.5.1. Shape Cropping

As the safety features proposed in this thesis are all based on Shape Cropping, the
Shape Cropping algorithm needs to support arbitrary shapes, i.e. both convex and
concave hulls. Therefore, an efficient implementation is required for calculating
multiple instances of Shape Cropping in real time on multiple robot arms.

As basis for the implementation, the cropHull class of the Point Cloud Library
(PCL) was used which supports testing points for inclusion in arbitrary meshes. It
is mathematically based on the ray-triangle intersection method of Sunday [169].
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Given a point p and a mesh as a structure of triangles, three rays originating in
p with arbitrary directions are checked for intersection with the triangles of the
mesh. A majority vote is then taken on the detected odd-numbered ray-triangle-
intersections to determine if the point is inside or outside the given mesh: If more
than one ray has crossed a triangle an odd number of times, the point lies inside
the mesh.

The problem of testing points for inclusion in meshes is a highly parallelizable
problem, as each point can be checked at the same time without dependencies
between each other. Therefore, the underlying ray-triangle-intersection code was
ported to CUDA for parallel execution on the graphics card to enable real-time
processing. As the bandwidth between host memory and graphics card memory
is a bottleneck for many General-Purpose Computing on Graphics Processing
Unit (GPGPU) tasks, transfers between both were minimized. The meshes that
represent the hulls used for Shape Cropping are transferred to GPU memory only
once, at the initialization of the algorithm, and later transformed in memory based
on the current robot pose. As the point cloud to which Shape Cropping shall be
applied changes between each execution of the algorithm in most scenarios, it
needs to be transferred to GPU memory in each iteration. The result is transferred
back to host memory as the number of ray crossings per point.

4.5.2. Robot localization

To determine the location of a robot arm in the scene, first its position is estimated
coarsely using either active or passive initial localization (see Figure 3.4). The
detected pose is then iteratively optimized to yield the final detection.

4.5.2.1. Initial localization

Passive Passive robot localization does not require any motion sequences to
be performed by the robot arm for the initial localization. Rather, it is based on
landmarks in the scene that are detected first and then serve to reduce the size
of the search space. In case of robots that are mounted to the OR table, such
as the OP:Sense system, the MiroSurge system or other systems presented in
section 2.2.1.4, the OR table itself can be used as such a landmark. In the following,
general knowledge about the camera positions with respect to the OR table is
assumed, such as the fact that cameras are ceiling-mounted around the OR table
as in the realized supervision system.

For real applications, it is expected that an OR table with a stationary column is
used and that information about the table configuration, such as height, rotation,
longitudinal and transversal shift and angle of segments, can be accessed via
according interfaces. In this case, the search space can be restricted based on
accurate knowledge which is already available. For the laboratory experiments
and evaluation, in which a mobile OR table was used that does not offer access
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to said parameters, a custom detection of the OR table pose based on its surface
geometry was implemented as follows:

1. The table surface plane is detected by Random Sample Consensus (RANSAC).

2. By performing Principal Component Analysis (PCA) on all inliers of the
detected plane, the orientation of the OR table surface is calculated (with
an ambiguity of 180◦ in the rotation around the plane’s normal due to the
symmetry of the OR table).

3. All inliers are projected onto the plane and its outer contour is detected by
fitting a minimum-sized rectangle in 2D space.

4. Based on the surface plane parameters and the table boundaries, the pose of
the OR table is calculated.

For robots mounted at the sides of the OR table, this defines two box-shaped
ROIs at both sides of the OR table to which the search space for the robot base
position can be restricted. To detect potential robot base positions, the ROIs are
extracted from the scene point cloud and Euclidean Clustering based on Kd-Trees
is performed. Detected clusters are projected to 2D space, where they are analyzed
for correlation with the cross-section of the outline of the robot base link.

As the robot arms are rigidly attached to the OR table, their relative orientationRrel

w.r.t. to the OR table can be assumed static and known. Therefore, the orientation
of each robot base Rrobot can be calculated based on the table orientation Rtable as
Rrobot = Rrel ·Rtable, but is still ambiguous to a 180◦ rotation around the normal of
the OR table surface plane.

If multiple robot arms are attached to an OR table, only one iteration of passive
localization is necessary to detect all robot bases. However, the cross-section-
based detection does not provide any information as to which detected robot base
corresponds to which robot arm.

Active It cannot be assumed that robot localization based on landmarks is possi-
ble in all situations. Therefore, an active localization approach has been developed
where each robot is detected based on a short motion sequence it performs. Con-
cerning the system architecture (see section 4.3.4), this requires an interface to
the robot through which either the robot can be controlled on joint-level or a
pre-defined motion sequence can be triggered.

Active robot localization consists of the following main steps for each robot arm:

1. A pre-defined motion sequence is performed by the robot arm. For the
LBRs used in this work, this motion is defined as an oscillating motion
in the second joint of the robot, starting from an upright pose. In regular
intervals, an octree representation of the scene is calculated and compared to
the previous one. The detected differences are added to a point cloud p.
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2. PCA is performed on p to calculate its two major components. The first
component directly corresponds to the upward axis of the robot. The robot
position can then be estimated based on the shape and position of p together
with the known geometric properties of the robot and the known joint
orientations for which p was detected.

Figure 4.22.: Spatial change point cloud showing the accumulated point clouds of
a LBR acquired during a continuous sweeping motion. In the point
cloud acquired by the Kinect v1 camera system (left), the shape of
the LBR is clearly recognizable, whereas it appears fully blurred as
captured by the Kinect v2 system (right).

Figure 4.22 shows a visualization of the spatial change clouds obtained with the
Kinect v1 and Kinect v2 camera systems.

Contrary to passive localization, active localization can be performed in multiple
passes in order to unambiguously detect each robot arm. Alternatively, it is also
possible to detect multiple robot bases in one pass, which again results in an
ambiguity concerning the mapping of detected robot bases to the corresponding
robot arms.

4.5.2.2. Localization optimization

Both methods for initial localization provide an estimation of the robot position
which is based on partial information only, i.e. the cross-section of the base segment
or the “blurred” spatial change information. Therefore, localization optimization is
performed which leverages the full shape of the robot in a given pose for refining
the localization, recovering the ambiguity w.r.t. its orientation and matching the
detected robot bases to the corresponding robots.

Based on information provided by Shape Cropping, i.e. the number of inliers and
outliers as defined in section 3.2.3, different criteria are proposed for assessing the
quality of a pose estimation in a given scene. The total number of inliers #in and
outliers #out, both accumulated over all segments of the robot, are employed as a
measure for quantifying the overall validity of a detection. If a detection is valid,
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e.g. #in is higher than a specified threshold, the inlier to outlier ratio rio is used as
a qualitative criterion:

rio =
#in

#out+ 1
. (4.2)

Estimation refinement In order to refine an estimated robot base pose pinitial,
a grid of positions in a spherical neighborhood of pinitial is sampled by applying
shape cropping to each position. This yields up to three positions that each
optimize one of the criteria, i.e. maximize #in or rio or minimize #out. If all poses
are distinct and fulfill additional constraints, such as surpassing a threshold of
#in, geometrical averaging of the remaining positions is then used to determine a
final position.

This sampling process is repeated multiple times with decreasing search radii and
inter-position distances, resulting in a refined pose estimate.

Outlier-based correction If the initial localization results in a high amount of
outliers, this can be the effect of a slight misdetection. If, for example, the robot
pose is estimated too far away from the camera, parts of the surface of the robot
will register as outliers among all segments. Therefore, an analysis of the spatial
distribution of all outliers is performed per segment. Using Euclidean clustering
of the outliers, a displacement vector between the center of the according segment
and the center of the outliers is calculated. The estimated robot pose is then shifted
by the calculated displacement vector. Both resulting positions are rated by Shape
Cropping and compared to the initial one. The best rated position is kept as the
new estimation.

Single camera optimization As the estimation refinement step detailed above
results in poses that maximize #in and minimize #out, problems can arise in
scenes acquired from a single viewpoint. As only the “front” of the robot is
represented in the scene due to the 2.5D nature of the sensor, it is possible that the
whole surface of the robot is placed in the center of the inner hull without incurring
the penalty of high #out, as the back side is not visible. Therefore, positions that
are estimated too close to the camera may be rated better than the correct position
if Shape Cropping is performed on a point cloud acquired by a single camera.

This can be corrected by minimizing the distances between the inner hull of the
robot and all inlier and outlier points. As the misdetection results from an incorrect
distance between camera and robot, a vector between the camera and the current
robot position is established. The position of the robot is then optimized along this
vector, using the sum of distances as the optimization criterion.
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Sequence of optimization Based on the specific optimization steps presented
above, the localization optimization can be performed either globally, based on a
full scene model that contains the fused point clouds of all cameras, or locally on
a per camera basis. Local optimization has the benefit of providing a robot base
pose estimation per camera, which can be leveraged for performing consistency
checks on the camera registration. If e.g. base poses estimated by one camera
show a consistent offset in comparison to the estimations by the other cameras,
this is an indication for a miscalibration. The local, per camera optimization is
only applicable if it can be expected that multiple segments of the robot are in the
field of view of each camera. This requires that the FoV of the cameras is large and
overlapping, as is the case with the Kinect cameras in the supervision system. In
case of the PMD cameras, both the narrow FoV and the lack of overlap prevent
local optimization.

The per camera optimization is performed as follows:

1. For each camera:

1.1 Perform estimation refinement to calculate rio for the pose estimation
provided by initial localization. In case of a low result, apply outlier-
based correction, followed by estimation refinement.

1.2 Rotate estimated robot base pose by 180◦ around its upward axis.

1.3 Perform estimation refinement to calculate rio. In case of a low result,
apply outlier-based correction, followed by estimation refinement.

2. Decide on the correct orientation by taking a majority vote of all cameras, set
correct orientation for all further processing.

3. For each camera: Perform single camera optimization.

4. Optionally: Set the robot to different joint configurations and repeat step 1 for
each configuration.

5. Calculate the final robot base pose based on the results obtained by all
cameras in all iterations.

If different robot configurations are evaluated during step 4, multiple iterations
of Shape Cropping are performed that each provide a position estimate. The
validity and quality of these estimates can vary, i.e. due to the visibility of the
robot in a given pose. Therefore, a weighted approach is employed to derive the
final position pf based on n individual position estimates pi. To take into account
both the validity and quality of each estimate, the weight wi of each estimate is
calculated as the product of the respective number of inliers #ini and inlier to
outlier ratio rio,i:

wi = #ini · rio,i. (4.3)
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The final position pf is then calculated as

pf =
1∑n

i=1wi

n∑
i=1

wi · pi. (4.4)

Figure 4.23 illustrates the single steps of a passive localization and subsequent
optimization, based on data acquired by the Kinect v2 camera system.

4.5.3. Detection of impending collisions

As detailed in section 3.2.4.2, impending collisions are detected based on violations
of the safety zone by outside objects. One obvious criterion for detecting such
violations is again the ratio rio of inliers to outliers as given in Equation 4.2, which
decreases as soon as the safety zone is violated. However, rio is only viable
as a single criterion in situations where only discrete measurements need to be
evaluated and visibility of the robot for all cameras remains the same. If a temporal
analysis is performed and the robot is moving, rio can be affected e.g. when a
segment of the robot moves out of the FoV of one camera, as the number of inliers
#in drops, even if the number of outliers #out stays equal.

Therefore, the absolute number of outliers per segment is employed as the main
criterion for detection of impending collisions. #out is monitored and a moving
average is calculated over multiple frames. If the number of outliers abruptly
increases by over 20 % as compared to the moving average, a potential collision is
flagged for further checking. Since small sample sizes are more prone to variations
caused by e.g. noise or other interferences, the number of outliers in the current
frame needs to surpass a fixed threshold. If this is the case, all detected outliers
are classified using Euclidean clustering of the spatial neighbourhood of the robot.
If they belong to an outside object, an impending collision is detected and an
appropriate reaction can be triggered.

While this method is directly applicable to static robot poses, there is a major
drawback when applied directly to a moving robot: If the robot is moving and
the latency of the camera system is different from the latency with which robot
pose data is received, the virtual inner and outer hull are not synchronized to the
robot pose as perceived by the camera system. This is due to the fact that two
sources of information about the scene from different times are being mixed into
one representation: The safety zone is constructed based on the current robot pose,
which is usually available with a low latency in the range of ≤ 1 ms, whereas the
scene, which is segmented by Shape Cropping, has a higher latency, depending
on the concrete embodiment of the camera system. This leads to the occurrence
of “phantom collisions”: A part of the points that belong to the robot are not
segmented into the inner hull of the safety zone, but register as outliers, while
objects directly in front of the robot would be classified incorrectly as inliers.
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4.5. Safety concept

(a) Detected surface and orientation of OR
table.

(b) Cross section of detected robot bases.

(c) Incorrect matching of detected base to
lower robot arm.

(d) Correct matching of detected base to
lower robot arm.

(e) Pose optimization for upper robot arm. (f) Final result with both robot arms cor-
rectly matched and optimized.

Figure 4.23.: Steps of passive localization performed with Kinect v2 camera system.
For image (c) to (f), green points depict the virtual scene, blue points
inside the robot hull are inliers of the currently estimated robot pose
and red points are outliers.
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To solve this, a temporal separation of the inner hull of the safety zone and its outer
hull is proposed. Based on the known time delay between reception of robot pose
data and availability of the fused point cloud provided by the supervision system,
the inner hull is constructed using delayed robot pose data which is synchronized
to the analysed point cloud. The outer hull of the safety zone is constructed based
on the most recent robot pose data to keep the safety zone centered around the
robot’s pose in the real scene.

4.5.4. Continuous pose supervision

The daVinciTM system, which is currently the only system for MIRS that is com-
mercially available and approved by the FDA, features internal redundancy for
safeguarding the correct operation of the robot arms. Specifically, the angular
position of each joint is determined by two different sensors, the encoder and a
potentiometer. A safety warning is triggered if a differential change is detected
between both sensors [184]. However, the Manufacturer and User Facility Device
Experience (MAUDE) database lists at least one report of a case where the sur-
geon appears to have misinterpreted the safety warning and carried on with the
intervention multiple times [180]. MAUDE further contains multiple reports of
cases in which patients have been injured by involuntary motion of the robot arm
without a prior warning of the daVinciTM safety system [182, 183], sometimes even
described as a “stabbing motion” [181].

It cannot be known if these instances were preceded by faulty joint actuation of the
robot arm and/or if the motions deviated from the control commands that were
sent to the robot. If these were the case, the issue could have been recognized early
and therefore prevented by continuous supervision of the robot’s pose, which
would allow the supervision system to detect such incorrect motions and issue
e.g. an emergency stop. Either way, the continuous supervision of the correct
pose of each robot arm complements the internal sensors of the robot and adds an
independent, additional safety layer.

In the proposed system, continuous pose supervision is performed the same way
as detection of impending collisions: By applying shape cropping to the current
scene, safety zone violations are detected. If Euclidean clustering shows that a
violation is caused by the robot itself, i.e. all outliers are connected to the same
spatial region as the robot, this results in the detection of an incorrect robot pose.
As this is technically identical to the detection of impending collisions, it is realized
in the same code path, i.e. transfer from the current scene to GPU memory and
Shape cropping only need to be applied once. Therefore, no performance penalty
is incurred for continuous pose supervision.
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4.6. Feedback to OR personnel

4.6.1. Physical setup

Within the spatial constraints of both the OP:Sense setup and real ORs, realization
of spatial augmented reality on a projection area that covers the full OR table
requires either a wide-angle projector or a system consisting of multiple projectors
with a standard projection ratio. The use of multiple projectors has advantages
in terms of preventing occlusions and shadows caused e.g. by OR personnel or
robot arms, but the technical feasibility of actual installation in an OR is doubtful
at best due to the space requirements and obstructions caused for ceiling-mounted
equipment such as the OR lamp. Using a single short-throw projector considerably
reduces the space requirements while allowing for a wide projection surface.

Due to spatial constraints in the OP:Sense setup, the projector had to be set up in a
sideways configuration and combined with a deflection mirror at a 45◦ angle. As
the mirror surface is planar, this only inverts the y-axis of the projection and does
not alter the optical properties of the projection system. A special front reflecting
mirror was selected to avoid double projections that are inherent to projection
systems that employ standard mirrors.

4.6.2. Software implementation

As the proposed system is realized as a distributed system, the projection system
needs to allow for multiple sources to perform reactive projection onto the scene,
while at the same time not requiring excessive network bandwidth. Conceptually,
this requires to split projections into a high-level part, i.e. description of abstract
graphical aspects of a projection that signals information to the user, and a low-
level part, i.e. the concrete rendering of the output to the projector based on the
high-level information.

This was realized by implementing a central projection node that can take input
by arbitrary ROS nodes in the OP:Sense system. The projection node is executed
on one of the SFF PCs of the Kinect v1 camera system to which the projector is
connected due to the spatial proximity. The projection node is based on open-
Frameworks for display purposes and fully integrated into the ROS system in
order to access current information about the state of the system as shown in
Figure 4.24. It offers two distinct methods by which other nodes can provide
information to be projected into the scene:

• SVG-based: Client nodes send a string containing SVG markup to the pro-
jection node. This is rendered and projected onto the scene until new SVG
markup is received by the projection node. To allow for dynamic projection
without requiring continuous updates of the SVG data by the client node,
an extension to SVG markup has been implemented that allows to directly
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use a frame id of a named entity in ROS as coordinates in SVG. The SVG
markup is then continuously evaluated by the projection node by querying
the according transformations from the tf-tree and creating and rendering
the resulting graphics.

• Cloud-based: Client nodes provide point clouds whose outlines shall be
projected onto the scene. Point clouds are sent as native PointCloud2
messages whose frame ids are extended by additional, custom projection
markup that specifies the graphical properties of the projection. This includes
e.g. color, animations like fading and blinking as well as the possibility to
define a fixed time for the projection after which it is to be removed. Within
the projection node, all received clouds are stored, evaluated and rendered
in each frame based on their graphical properties. Client nodes can update
the point clouds without breaking the animation cycle.

For both projection methods, rendering refers to generating a geometrically correct
image for the projection that takes into account the specified information (e.g. SVG
markup) and the intrinsic and extrinsic parameters of the projector.

Figure 4.24.: ROS-based implementation of the projection system: Multiple client
nodes can publish high-level descriptions of the projection, which
are interpreted and rendered by the projection node based on spatial
information provided on the tf-tree.

A major consequence of this design is that it allows for a modular system setup
with light-weight client nodes, as each client node only needs to provide a high-
level description of the desired projection, based on information available within
the node. This description only needs to be sent once to the projection node.
Therefore, it is possible, but not required for clients to store an internal state of the
projection and regularly update it.
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4.6.3. Vertical surface mapping

When a projection is performed onto an unknown scene, different kinds of dis-
tortion can occur which are related to the geometric properties and to the color
distribution of the scene as well as to the viewpoint of the observer. Geometric
distortions are caused by projecting onto any surface which is non-planar and not
perpendicular to the projection system. They can be eliminated by pre-warping the
projected image based on the geometry of the projection surface. For example, in
case of planar projection surfaces, a simple homography can be calculated between
the projection surface and the projector system. For arbitrarily-shaped surfaces,
more involved correction functions have been proposed in literature [13, 141].

However, an observer-independent projection onto arbitrarily shaped surfaces is
generally not possible because the perceived geometric distortion directly depends
on the viewpoint of the observer. Figure 4.25 illustrates this based on a minimally
invasive scenario: The direct lines of sight of each observer to the instrument tips
intersect the patient’s body surface at different, observer-dependent points. For
direct projection, each intersection again differs from the position to which the
instrument tips are projected on the patients body.

Figure 4.25.: Projection of laparoscopic instruments onto the patient’s body surface.
Left: With direct projection, the projected positions (red) differ from
the perspectively correct positions for both observers (blue and green);
right: Vertical mapping of the instrument tips to the body surface
before projection results in a consistent representation which is visible
from different viewpoints.

As one of the goals for employing SAR within this thesis is to facilitate a shared
situation awareness, multiple observers, such as the OR personnel, need to be able
to perceive the projection in an intuitive way. Therefore, a vertical mapping of the
instrument tips onto the patient’s body is proposed that facilitates an intuitive,
shared understanding of the projected positions. Based on the known 3D surface
geometry of the patient’s body as acquired by the camera system, which can be
seen as a 2D height function zs(x, y), all points of interest pi = (xi, yi, zi) inside
of the patient’s body are mapped vertically to corresponding projection points
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pp = (xp, yp, zp) on the surface of the patient’s body by correcting their height:

zp =

{
zs, if zi ≤ zs(xi, yi)

zi, otherwise

This results in a faithful representation of the spatial relations which is independent
of the projector position, consistent among all observers and easy to interpret. For
different types of interventions or angles of the OR table, the same principle can be
applied by adapting the projection directions, e.g. using the normal of the surface
of the OR table.

4.6.4. Attention direction

In case of adverse events, the system needs to be able to capture and direct the
attention of the OR personnel to important locations, e.g. such as the location of an
impending collision between robot and patient. Factors that influence the ability
of a system to attract attention of humans have been studied in several works, of
which Green gives an extensive account [45]. Two main concepts of attention are
visibility and conspicuity:

• Visibility states if a viewer is in principle able to detect a sensation, but it
does not imply whether they will notice it.

• Conspicuity is defined as “the likelihood that a viewer will notice and perceive
visible information” [45].

The main potential sensory conspicuity cues are (i) color and (ii) flicker and motion.
While red has long been regarded as the most conspicuous color, different studies
have shown that yellow and yellow green are more conspicuous in different
scenarios. Regarding temporal aspects, which are directly applicable to projected
optical cues, the main variables are the properties of the modulation. This includes
the modulation amplitude, i.e. the difference between between highest and lowest
brightness, the modulation frequency and the modulation waveform. Based ono
different studies, Green estimates that a combination of a maximal modulation
with a frequency of 3 Hz - 5 Hz and a sharp offset of the waveform will exhibit the
highest conspicuity.

4.6.5. Features

In subsection 3.3.3, three main applications for providing feedback to the OR
personnel have been identified: (i) visualizing the robot state, (ii) visualizing the
instrument positions in MIRS and (iii) drawing attention to adverse events.

102



4.6. Feedback to OR personnel

These are implemented as follows:

• Visualization of robot state: The different states of the robots are visualized
based on the ISO 22324 guidelines for color-coded alerts, which correspond
to a common interpretation of colors in safety-related scenarios. Specifically,
the following combinations of colors and temporal cues have been used:

Green: The robot is in hands-on mode. It can be approached and
manually moved without risk.

Yellow: The robot is controlled remotely by the surgeon, i.e. the clutch
is pressed. The robot can move at any time.

Red: The robot is in autonomous mode and is or will be performing a
motion immediately. It is unsafe to approach the robot.

Gray: The robot arm is in a static mode and cannot move. It is safe to
approach the robot.

• Augmentation of surgical instruments in MIRS: The poses of laparoscopic in-
struments and the endoscopic camera are dynamically projected onto the
patient body. Additionally, the frustum of the endoscopic camera is projected
to allow for intuitive understanding of the position of the instrument tips rel-
ative to the camera. This can be further assisted by optionally superimposing
the instrument tip with a circle that dynamically adjusts its size depending
on the distance between instrument tip and abdominal wall. The distance to
the optical axis of the endoscopic camera can be visualized by color-coding
for instrument insertion.

• Feedback in case of adverse events: If an adverse event is detected, the attention
of the user needs to be attracted and directed to a specific location. This is
performed by projecting a shape that corresponds e.g. to the outline of a
potentially colliding object. An evaluation of the effectiveness of attracting
the users attention to arbitrary positions using visual cues is presented in
subsection 4.6.4.
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5.1. Supervision system

5.1.1. Interference analysis

To analyze interferences between different types of 3D cameras operating in the
same volume, i.e. [pmd]vision S3, [pmd]vision CamCube 2.0, Kinect v1 and
ARTtrack2 OTS, a test bed was set up as shown in Figure 5.1. A [pmd]vision S3, a
[pmd]vision CamCube 2.0 and a Kinect v1 were mounted to a rigid support frame
on a measurement table. Further cameras, i.e. the ARTtrack2 system and five
additional [pmd]vision S3 cameras, were ceiling-mounted above the test bed. A
white board was mounted as a planar surface to an LBR and mechanically coupled
to the FARO measurement arm. With the distance between the board and the
support frame kept static, the cameras were switched on in different combinations
and the distance to the board as measured at the center pixel was recorded with
each camera for 100 iterations. The distance between the surface of the camera
lens and the white board was measured and annotated.

Figure 5.1.: Test bed for analyzing interferences between [pmd]vision S3,
[pmd]vision CamCube 2.0, Kinect v1 and ARTtrack2.

Table 5.1 shows the numerical results for the conducted measurements. Plots for
the according data are given in Appendix A. With exception of the [pmd]vision S3,
it can be seen that the measured variances per camera only slightly differ between
measurements with different combinations of camera systems turned on. For the
[pmd]vision S3, the magnitude of variance increases by two orders of magnitude
when other [pmd]vision S3 cameras are operated in the same volume at the same
modulation frequency. Applying the time- and frequency-multiplexing as detailed
in section 4.4.3.2 remedies the interferences.
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S3 CamCube Kinect v1
standalone 1.6 mm2 10.0 mm2 2.1 mm2

with ARTtrack2 1.7 mm2 7.6 mm2 0.2 mm2

with S3 – 9.4 mm2 2.8 mm2

with CamCube 1.6 mm2 – 0.2 mm2

with Kinect v1 1.8 mm2 11.3 mm2 –
with unmultiplexed S3 377.6 mm2 9.2 mm2 0.8 mm2

with multiplexed S3 2.7 mm2 9.8 mm2 3.7 mm2

with all cameras 3.1 mm2 11.3 mm2 1.5 mm2

Table 5.1.: Variance over 100 distance measurements at central camera pixel, car-
ried out with [pmd]vision S3, [pmd]vision CamCube 2.0 and Kinect v1
with different combinations of other IR-emitting camera systems active
in the same woking volume.

As result, it can be seen that while different combinations of cameras influence
the variance, the magnitude of the difference is less or equal than the depth
resolution of the corresponding camera. Therefore, it is viable to operate the
different subsystems of the proposed supervision system in a common working
volume. The multiplexing scheme detailed in section 4.4.3.2 is shown to eliminate
crosstalk between the PMD cameras.

Concerning potential interferences between multiple kinect v1 cameras and po-
tential side-effects caused by e.g. usb-cable length, which is not applicable to the
proposed setup, extensive evaluations have since been performed by Lemkens et
al. [105].

5.1.2. Projection-based registration

To enable fusion of scene information acquired by different devices, such as the
3D cameras and the OTS, all devices need to be registered to a common coordinate
frame. This thesis proposes a projection-based registration method where features
are projected by visible light into the scene, onto the surface of an OR table, and
detected by the different camera systems as discussed and depicted in section 4.4.6.
In the following, the concrete evaluation procedure is described as well as the
obtained results.

5.1.2.1. Evaluation procedure

The projection-based registration was carried out for all camera systems and the
ARTtrack2. The FARO measurement arm with a certified accuracy of 0.026 mm
and a standard deviation of 2σ = 0.010 0 mm after calibration of the measurement
probe was used as ground truth. Five iterations were performed with 27 features
projected in each iteration. To obtain results that are realistic for a clinical setting,

106



5.1. Supervision system

an OR table covered with table cloth was used as projection surface without any
further modifications. Iterations were performed at table heights of 0.73 m, 0.88 m,
1.03 m, 1.18 m and 1.33 m.

The PMD cameras used in this thesis feature a so-called Suppression of Backlight
Illumination (SBI) which cannot be disabled. By default, only an amplitude image
can be obtained, which contains pixelwise information about the strength of the
reflected IR signal sent out by the camera. However, it contains no information
about the ambient light present in the scene. To overcome this restriction, the four
phase images were extracted from the raw data of the [pmd]vision S3 cameras
and analyzed for susceptibility to ambient light. However, it has been found that
the hardware-based SBI prevents ambient light information from being included
even in the raw data. Detection of projected features was therefore not feasible
with the PMD cameras.
As an alternative solution, detection was instead performed manually by simulat-
ing the projected features based on the amplitude map. In the manual acquisition
stage, a non-reflecting circle of cloth with the same diameter as the projected
features was positioned in the location of each feature and the detection of the
according feature with the PMD cameras was triggered manually.

All systems were switched on for the full registration procedure, except for the
Kinect v2 and PMD camera systems which were switched on alternately to prevent
crosstalk. The registration procedure consisted of the following steps for each
iteration:

1. Start Kinect v2 camera system, stop triggering PMD camera system.

2. Interactively determine projection area.

3. Start automatic feature detection by Kinect camera systems.

4. Enable PMD camera system in quality mode, stop Kinect v2 camera system.

5. Manually annotate projected points by ARTtrack2, FARO and PMD camera
system.

6. Adjust OR table height for next iteration.

For evaluating the accuracy of the obtained registration, two different measures
have been employed: the registration error based on the feature positions that
are reconstructed by the bundle adjustment algorithm and the registration error
w.r.t. the ground truth feature locations obtained with the FARO measurement
arm. To prevent measurements from the FARO arm from influencing the bundle
adjustment, bundle adjustment was first performed without inclusion of data
obtained by the FARO arm. The FARO was then registered to the reconstructed
feature positions in a separate step, providing a transformation between the
original registration results and ground truth captured by the FARO arm. The
reconstructed camera and feature positions are shown in Figure 5.2.
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Figure 5.2.: Reconstructed origins of the coordinate system of different devices and
locations of features that were projected on the surface of an OR table
at five different heights, visualized from two different perspectives.

Evaluation set PMD Kinect v1 Kinect v2 ART FARO Projector
P × ×
K1 × ×
K2 × ×
PA × × ×
PK1 × × ×
PK1A × × × ×
PK1K2 × × × ×
PK1K2A × × × × ×
PK1K2FA × × × × × ×

Table 5.2.: Overview of evaluation sets for registration accuracy evaluation. The
leftmost column lists the name of the evaluation set, crosses represent
the inclusion of a camera system in the respective evaluation set.

Registration accuracy was evaluated separately for different evaluation sets that
each consist of a subset of the available cameras, as listed in Table 5.2. Per evalua-
tion set, three evaluations have been performed: The initial and local registration
error per camera are calculated as Euclidean distances between the detected fea-
tures and the features reconstructed by bundle adjustment, using all detected
features (initial) or the features remaining after two iterations of outlier removal
(local) as presented in section 4.4.6.2. The global registration error is also calculated
based on the results of double outlier removal, but w.r.t. the ground truth obtained
by FARO. Table 5.3 lists the different combinations used for evaluation.

initial local global
All features ×
2 iterations of outlier removal × ×
W.r.t. reconstructed features × ×
W.r.t. ground truth ×

Table 5.3.: Naming convention for evaluated combinations.
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5.1.2.2. Registration results

For all following boxplots, the red line represents the median and the box borders
represent the lower and upper quartile, between which 50% of all measurements
are located. The whiskers are drawn in default MATLAB style that corresponds to
the definition given by Tukey, i.e. whiskers are extended to the next value outside
the Interquartile Range (IQR) that is still inside a maximum distance of 1.5∗IQR to
the lower or upper quartile. Therefore, the area within the whiskers covers about
99.3 % of all measured values. Outliers are marked as red crosses. To maintain
readibility, all plots are cut off at a limit of 70 mm, if applicable. This is represented
with a cut-off line on which outliers over that threshold are marked.
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Figure 5.3.: Initial registration error of all cameras for evaluation set PK1K2FA.

Figure 5.3 shows the initial registration errors for all cameras in evaluation set
PK1K2FA. The different types of cameras exhibit clearly different outlier distri-
butions: The optical tracking system and FARO measurement arm show a small
median error of 8.7 mm and 6.8 mm with a narrow IQR, based on manual anno-
tation of 97.0 % and 91.9 % of the projected features. Single outliers occur due to
inaccurate manual annotation or technical reasons up to a maximum of 1.025 m
(ARTtrack2).

Kinect v1 cameras with a wide angle and resolution of 640 × 480 px observed
60.7 % to 70.4 % of the projected features with a median registration error between
15 mm and 16.4 mm. The Kinect v2 camera 0 needs to be regarded separately, as
due to its wide FoV and top-down perspective centered above the OR table, it is
the only device that detected all but one of the projected features. This results in
a low median error of 3.4 mm. Other Kinect v2 cameras that still observe a high
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percentage of the projected features (79.3 % – 84.4 %) consistently feature a median
error between 7 mm and 9.6 mm.

PMD cameras (excluding camera 4 and camera 5) have a median error of 11.6 mm
to 18.3 mm based on a detection rate of 29.6 % to 41.5 % due to their low FoV.
Camera 4 and 6 are located sideways to the OR table and feature a high amount
of outliers in the raw data, leading to a high median of 31.1 mm and 29.4 mm.
The high initial number of outliers for these cameras is caused both by the small
coverage area of the projection surface and by unintended side-effects of the
manual parts of the registration procedure. The latter include shifting positions of
the FARO arm after each measurement as well as other changes outside the ROI
which were detected as “features” due to amplitude changes. This is not expected
in a real-world scenario where all cameras are registered based on visible light
without manual intervention.
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Figure 5.4.: Local registration error of all cameras for evaluation set PK1K2FA.

The registration errors after two iterations of statistical outlier removal are shown
in Figure 5.4. Compared to the initial registration, all cameras and devices exhibit
a smaller median registration error, both due to the modification of the underlying
sample and due to the better registration result of the iterative bundle adjustment.
This is especially obvious for PMD cameras 4 and 6, for which many incorrect
feature detections were present in the raw data set.

The global registration result w.r.t. the ground truth acquired by the FARO mea-
surement arm is shown in Figure 5.5. It shows an increase of median error of
21.4 % as averaged over all cameras.

Figure 5.6 shows the initial, local and global registration error for evaluation
set PK1A, i.e. the supervision system as realized in this thesis. For all systems,
the registration error necessarily decreases by outlier filtering. The registration
accuracy of both the Kinect v1 system and the ARTtrack2 system also decrease
from local to global evaluation, which means that the features detected by the

110



5.1. Supervision system

0

10

20

30

40

50
A

R
T

K
in

e
c
t 

I 
1

K
in

e
c
t 

I 
2

K
in

e
c
t 

I 
3

K
in

e
c
t 

I 
4

K
in

e
c
t 

II
 0

K
in

e
c
t 

II
 1

K
in

e
c
t 

II
 2

K
in

e
c
t 

II
 3

K
in

e
c
t 

II
 4

P
M

D
 C

a
m

C
u

b
e

P
M

D
 S

3
 1

P
M

D
 S

3
 2

P
M

D
 S

3
 3

P
M

D
 S

3
 4

P
M

D
 S

3
 5

P
M

D
 S

3
 6

R
e

p
ro

je
c
ti
o

n
 e

rr
o

r 
(m

m
)

Figure 5.5.: Global registration error of all cameras for evaluation set PK1K2FA.
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Figure 5.6.: Initial, local and global registration error for cameras of the proposed
supervision system, grouped by camera type, for evaluation set PK1A.
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5. Results

Kinect v1 cameras are more accurate than the reconstructed features. This also
explains the increase in registration error for the PMD cameras from local to
global evaluation. As expected, the ARTtrack2 system features the highest global
accuracy.
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Figure 5.7.: Global registration error of [pmd]vision S3 camera 1 in registration
results of different evaluation sets.

Figure 5.7 shows the registration error of the first [pmd]vision S3 camera in differ-
ent evaluation sets. The highest registration errors are present in the evaluation
sets P and PA where only the PMD camera system was used as 3D camera sys-
tem: Median error and standard deviation are 22.5 mm and 11.9 mm for set P and
23.2 mm and 11.4 mm for set PA. The error decreases for evaluation sets that in-
clude features detected by other camera systems, e.g. from the Kinect v1 (median:
15.4 mm, standard deviation: 10.1 mm) or from the Kinect v2 (median: 17.2 mm,
standard deviation: 7.4 mm). These results are in line with those obtained from
analyzing evaluation set PK1K2FA, where the PMD cameras also exhibited the
highest registration error. There is no significant difference between the inclusion
or exclusion of a non-camera-based measurement system, such as the ARTtrack2
OTS or the FARO measurement arm.

The registration accuracy for each single camera system is shown for the according
evaluation sets P , K1 and K2 in Figures 5.8, 5.9 and 5.10. Again, the PMD cameras
show the highest registration error with a median of 19.7 mm over all cameras,
due to their low lateral resolution and the resulting inaccuracy of detection of the
features. The Kinect v1 camera system performs better with a median registration
error of 15.7 mm over all cameras. Best registration results are achieved for the
Kinect v2 system with a median registration error of 7.3 mm over all cameras.

As result, the proposed projection-based registration process allows for successful
registration of multiple camera systems with minimal user interaction. While the
PMD camera system that was realized in this work needed to be registered semi-
manually, all current ToF cameras acquire both depth and intensity information
and can therefore be registered without these manual steps. The results obtained
by registering the Kinect v2 camera system clearly show that a higher FoV and
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Figure 5.8.: Global registration error of all PMD cameras for evaluation set P .
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Figure 5.9.: Global registration error of all Kinect v1 cameras for evaluation set K1.
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Figure 5.10.: Global registration error of all Kinect v2 cameras for evaluation set
K2.
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5. Results

better lateral and depth resolution increase the achievable registration accuracy, as
more features can be detected by each camera.

5.1.3. Frame rate and latency

Both the PMD and the Kinect v1 camera subsystem were evaluated for their
performance in terms of frame rate and latency. Table 5.4 shows the results
of the PMD camera subsystem, split into performance and quality mode. The
given timing statistics for the [pmd]vision S3 and the [pmd]vision CamCube 2.0
correspond to the time between triggering image acquisition by the respective
camera and triggering the next camera. For performance mode, this is the active
illumination time, i.e. the next camera (group) is triggered immediately after
one camera has stopped flashing. For quality mode, this includes illumination,
processing and publishing to the ROS network. The cycle update rate denotes the
update rate of the whole subsystem, i.e. the number of times per second that
all cameras have acquired new data. However, new information is available
at a higher rate than the cycle update rate because the different cameras of the
PMD camera subsystem are triggered at different times (see section 4.4.3.2). The
resulting rate at which new information is available in the scene is denoted as the
hybrid update rate.

Compared to the [pmd]vision CamCube 2.0, the [pmd]vision S3 shows a signifi-
cantly higher increase of time spent on each camera when enabling quality mode,
as can be seen in Table 5.4. The reason is that for [pmd]vision S3 cameras, the
integration time is increased by a higher factor and manufacturer-specific imple-
mentations of quality enhancement techniques, i.e. Double Sampling and Double
Frequency, are enabled in quality mode (see section 4.4.3.4). These modes are not
available for the [pmd]vision CamCube. The total time for each update cycle of
the performance mode is 79.3 ms. As the region around the OR table is covered
by only one [pmd]vision S3 camera each, the cycle update rate is the actually
achievable update rate for this region.

For evaluation of the latency, the real environment and its camera-based represen-
tation on a screen were filmed simultaneously with a high-speed camera at 240 fps.
By annotating frames in the recording where an event happened in the real scene
and on the screen, latency could be calculated based on the known frame rate

Performance mode Quality mode
S3 16.5 ms 145.2 ms
CamCube 43.2 ms 86.5 ms
Cycle update rate 12.6 fps 1.04 fps
Hybrid update rate 37.9 fps 7.3 fps

Table 5.4.: Frame times and frame rate of PMD camera system in performance and
quality mode
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5.1. Supervision system

PMD Kinect v1 Kinect v2
1-reliable coverage 77.0 % 98.5 % 100.0 %
2-reliable coverage 40.9 % 62.7 % 86.9 %
3-reliable coverage 25.1 % 24.3 % 59.3 %
4-reliable coverage 8.8 % 12.6 % 42.6 %

Table 5.5.: k-reliable scene coverage by different camera systems.

of the recording. The latency of the ToF camera system was evaluated using a
Hero4 by GoPro, USA, which is able to record the flashes of the IR illumination
of the PMD cameras. In the footage, the start of image acquisition as well as the
earliest visibility of the corresponding point cloud on screen were annotated. For
the Kinect v1 camera system, a SpeedCam MacroVis by High Speed Vision, Germany
was used to record the scene. Pre-defined events were annotated in the real scene
and on the recorded screen.

The resulting latency per PMD camera is 126 ms from start of image acquisition
to display on screen. This includes an uncertainty of up to 16.7 ms due to display
latency of the 60 Hz monitor. Based on timings given in Table 5.4, an event in the
scene will therefore be picked up by the first PMD cameras after 126 ms and after
186 ms by the latest PMD cameras. The latency of the Kinect v1 camera system
was evaluated to 966 ms.

5.1.4. Coverage analysis

Hänel introduces the notion of k-reliable coverage which denotes the coverage by k
different cameras [52]. For the realized camera systems, the k-reliable coverage has
been calculated based on a working volume of 2.5 m× 2.5 m× 1.2 m, positioned
symmetrically around the OR table at a base height of 0.8 m. This volume was
sampled by equidistant points at an interval of 2.5 cm. For each grid point, the
visibility for all cameras was calculated based on the field of view of the camera
and the camera pose relative to the ARTtrack2, as obtained by the projection-based
registration. Further, the coverage of points at a distance of no more than 1.5 m
was calculated. Table 5.5 shows the resulting coverage for both realized camera
subsystems. The Kinect v2 camera system is listed for reference, as Kinect v2
cameras offer a significantly wider FoV than the PMD and Kinect v1 cameras.

For visualization of the resulting coverage volumes for the different camera sub-
systems, they have been rendered with the OR table and one LBR for reference.
Renderings are based on a sampling grid with a point interval of 10 cm and the
camera poses obtained by the registration procedure. The color of grid points is
consistent to the number of cameras for which this point is visible, ranging from
dark blue (visible for one camera only) to dark red (visible for seven cameras),
which is only achievable by the PMD camera system.
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Figure 5.11.: Visualization of volume covered by at least one PMD camera from
front, side and top perspective.

Figure 5.12.: Visualization of k-reliable coverage volume for k = 1, 2, 3, 4 (left to
right) of the PMD camera subsystem.

Figure 5.11 shows the shape of the working volume for the PMD camera system. It
is visible from the top-down perspective that the coverage volume of the realized
system is hourglass-shaped, i.e. there is a lack of coverage at the both ends of the
OR table. In simulation, a better 1-reliable coverage of 96 % was achieved by an-
gling the cameras in the corners farther outwards in the direction of their diagonal
counterparts. However, this would decrease the 2-reliable coverage from 40.9 % to
34.5 % and the 3-reliable coverage from 25.1 % to 14.2 %. Therefore, camera poses
as shown in Figure 5.11 were chosen to increase coverage in the region of the robot,
which was mounted to the side of the OR table for all experiments. Figure 5.12
shows the k-reliable coverage for the PMD camera system.

Figure 5.13 shows the coverage of the Kinect v1 camera subsystem. While it
consists only of four cameras, its coverage is higher due to the wider FoV as
compared to the PMD camera subsystem as can be seen in Figure 5.14.

For comparison with the camera system realized within this thesis, coverage of
the Kinect v2 camera system was analysed as well. As was expected and is visible
in Figure 5.15 and Figure 5.16, the high FoV of the Kinect v2 increases all k-reliable
coverages significantly, i.e. by a factor of 2 for the 2-, 3-, and 4-reliable coverage
when compared to the PMD camera system.
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Figure 5.13.: Visualization of volume covered by at least one Kinect v1 camera
from front, side and top perspective.

Figure 5.14.: Visualization of k-reliable coverage volume for k = 1, 2, 3, 4 (left to
right) of the Kinect v1 camera subsystem.

Figure 5.15.: Visualization of volume covered by at least one Kinect v2 camera
from front, side and top perspective.

Figure 5.16.: Visualization of k-reliable coverage volume for k = 1, 2, 3, 4 (left to
right) of the Kinect v2 camera subsystem.
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Figure 5.17.: Scene representations acquired by PMD (left), Kinect v1 (center) and
Kinect v2 (right) camera system illustrate the achieved coverage of
the respective systems.

Figure 5.17 depicts a configuration of the OP:Sense system with two robots
mounted to the OR table, acquired by the three different camera systems. As
evidenced by coverage analysis, the PMD camera system provides least informa-
tion of the scene with a high resolution only available in the FoV of the [pmd]vision
CamCube. The Kinect v1 camera system provides a more complete scene repre-
sentation that covers most of the OR table. However, parts of the OR table are not
represented as they are shadowed from all covering cameras by the robot system.
The Kinect v2 camera system provides the most complete scene representation, as
can be seen from the fact that the OR table is fully represented and most parts of
the floor are acquired.

5.1.5. Effects of sterile draping

During an intervention, a sterile field has to be maintained around the patient to
prevent SSIs. Each robot arm is therefore enclosed in special, transparent surgical
drapes as shown in Figure 5.18. As these potentially affect the quality of mea-
surements of 3D cameras with active measurement principles due to additional
reflections and scattering of IR light, experiments were carried out to assess the
actual effect on the 3D cameras employed in this thesis.

5.1.5.1. Evaluation of influence on measurements

All camera systems were tested individually using the following procedure: Two
LBR robot arms were mounted at the sides of an OR table and kept in a static
configuration. 100 measurements were acquired per camera, out of which a
box-shaped ROI above the OR table surface was extracted, resulting in a subset
of the scene that only contains the robot arms. Both robots were then draped
using official draping for the daVinciTM S and Si, the Instrument Arm Drape by
Microtek Medical, Netherlands. With the draped robot arms, a second set of 100
measurements was taken with subsequent extraction of the same ROI as before.
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Figure 5.18.: Two LBRs mounted at an OR table without surgical draping (left) and
with surgical draping (right).

Figure 5.19.: Undraped and draped robot arms as perceived by Kinect cameras.
Top: Data acquired by Kinect v1 camera, bottom: data acquired by
Kinect v2 camera. Left to right: Depth data of undraped robots, depth
data of draped robots, color image of draped robots. All images are
crops from the original resolution.
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For all measurements obtained with open (non-draped) and draped robot arms,
the following metrics were calculated for each pixel where a valid measurement
was obtained in at least one frame:

• Mean distance: The mean distance of all valid measurements.

• Standard deviation: Standard deviation of all valid measurements.

• Visibility: The percentage of valid measurements to the total number of
frames.

The PMD camera subsystem and the Kinect v1 subsystem were used in their full
configuration, i.e. all cameras were enabled for performing the tests. The experi-
ment with Kinect v2 was carried out with only one camera enabled to isolate the
effects of the surgical drape and prevent interferences between multiple cameras
from influencing the measurements. As the measurements were executed consec-
utively and are evaluated for the distinct perspective of each camera, the absolute
values of the measured distances cannot be compared between the different cam-
era types. Figure 5.19 shows exemplary visualizations of the depth data acquired
by Kinect v1 and Kinect v2 cameras for undraped and draped robot arms.

From the results shown in Table 5.6, it can be seen that draping only slightly affects
the distance measurements, both absolute and in terms of standard deviation.
For all ToF-based cameras, draping unexpectedly improved the visibility, i.e. the
percentage of valid measurements per pixel. While the actual improvement is
most likely an effect of the glossy surface of the LBR and would need to be tested
for differently coated robots separately, it is apparent that the drape at least does
not negatively influence the visibility. The Kinect v1 cameras show a distinct
drop in visibility, which is consistent among all four cameras with an individual
decrease from 12.5 % to 18.7 %.

Mean distance Standard deviation Visibility
open draped open draped open draped

S3 (P) 1.329 m 1.335 m 5.0 mm 5.0 mm 97.0 % 99.0 %
CamCube (P) 1.042 m 1.047 m 9.8 mm 9.8 mm 90.7 % 95.1 %
S3 (Q) 1.378 m 1.383 m 2.8 mm 2.1 mm 95.5 % 99.1 %
CamCube (Q) 1.046 m 1.049 m 5.0 mm 4.7 mm 94.2 % 98.3 %
Kinect v1 1.531 m 1.525 m 16.4 mm 16.6 mm 91.5 % 75.3 %
Kinect v2 1.705 m 1.721 m 14.6 mm 11.7 mm 92.3 % 93.0 %

Table 5.6.: Influence of draping of the robot arms on distance measurement of
different camera types. All given results are averaged over all pixels
per camera and over all cameras of the same type. (P) and (Q) denote
the PMD camera system operating in performance or quality mode.
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5.1.5.2. Filtering of draping by PMD camera system

While the draping does not affect the measurement of the PMD cameras, it is
important to reliably detect measurements that only correspond to draping in
order to isolate the underlying shape of the robot. For PMD cameras, the amplitude
value per pixel represents the signal strength of the measurements. As it can be
expected that an emitted IR signal that passes through drape and then is reflected
by the robot has a higher strength than a signal which is only reflected by drape,
the amplitude differences of the received signals should be detectable.

To evaluate the feasibility of filtering draping based on amplitude values, the
amplitude of the obtained measurements was analyzed for all PMD cameras. For
the measurements performed with draped robot arms, amplitude values were
analyzed separately for pixels that correspond to the robot itself and for pixels that
returned no valid measurements in the first iteration, i.e. pixels that correspond
to draping only. The resulting amplitude values are exemplarily visualized in
Figure 5.20. For best visibility, for each image of Figure 5.20 the values have been
spread over the full color scale independently. However, the images therefore do
not allow direct comparison of absolute values.

Table 5.7 shows the resulting amplitude characteristics. The comparison of ampli-
tude values between open and draped robot arms shows a slight decrease of 3 % –
13 % per camera. The amplitude of measurements that correspond to draping is
on average 40.4 % lower than that of measurements that correspond to the draped
robot. Therefore, the amplitude is a usable indicator for filtering measurements
that correspond to draping.

A frame-based amplitude-based filtering approach was therefore implemented to
remove distance measurements that correspond to draping only. In each iteration
of the Shape Cropping algorithm, the mean mI of the amplitude of all inliers
in all segments of the robot arm is calculated. A threshold t is then calculated
as t = rf · mI , where rf is a custom outlier rejection factor. All outliers with an
amplitude below t are removed.

Figure 5.20.: Visualization of amplitude measurements for draped robot. Left:
Amplitude values of draped robot and amplitude values of drape ac-
quired by [pmd]vision CamCube, right: Amplitude values of draped
robot and amplitude values of drape acquired by [pmd]vision S3.
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Mean amplitude Standard deviation
open draped draping open draped draping

S3 (P) 3.99 3.69 2.22 0.0280 0.0266 0.0170
CamCube (P) 1 550 1 420 838 12.7 15.7 10.3
S3 (Q) 2.95 2.86 1.97 0.0157 0.0197 0.0153
CamCube (Q) 4 550 4 310 2 640 17.4 35.6 48.5

Table 5.7.: Comparison of amplitude of measurements that correspond to the open
robot, to the draped robot and to the draping itself. All given results are
averaged over all pixels per camera and over all cameras of the same
type. (P) and (Q) denote operating in performance or quality mode.

5.2. Forward propagation of semantic labelling

The proposed algorithm has been evaluated for the use cases presented in sec-
tion 4.4.7.1. All evaluations have been performed based on multiple data sets that
were recorded using the rosbag mechanism. Each data set contains the time-
stamped data received from the respective Kinect v1 camera(s), time-stamped ToF
frames of one or multiple PMD cameras as well as the according transformations
between all involved cameras. To evaluate the algorithm with different latencies,
recorded data sets have been played back with simulated delays for all ground
truth data. A list of metrics used for evaluation is given in Table 5.8.

Metric Definition
True positives tp Pixels correctly classified as part of the tracked human
True negatives tn Pixels correctly classified as not part of the tracked hu-

man
False positives fp Pixels incorrectly classified as part of the tracked human
False negatives fn Pixels incorrectly classified as not part of the tracked

human
Precision tp

tp+fp

Recall tp
tp+fn

ToF frame processing
time

Time required for processing a single ToF frame (ms)

Ground truth process-
ing time

Time required for forward propagation of the ground
truth of a single Kinect frame (ms)

Tracking loss Percentage of frames with complete loss of tracking

Table 5.8.: Metrics for evaluation of forward propagation of semantic labelling
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5.2.1. Latency minimization

Within the proposed algorithm of forward propagation of semantic labelling, the
extended tracking map is immediately calculated whenever a new ToF frame
arrives. It contains the estimated labelling for the new frame, based on the forward
propagated ground truth data (see section 4.4.7.2).

For latency minimization, the extended tracking map was compared to the cor-
responding ground truth, which is only available multiple ToF frames later. In
case of missing ground truth for one or multiple frames, no evaluation was per-
formed for these frames. However, this method of evaluation penalizes longer
latencies, because the number of leading ToF frames without any ground truth
information frames increases linearly with the latency and therefore more ToF
frames do not provide a tracking estimate. To isolate this influence of the delay
of the ground truth, each data set S was analyzed in two different subsets S1 and
S2. The first subset S1 includes all frames of S, S2 only includes frames where a
tracking estimation was provided by the ToF camera(s), i.e. recall and precision
were positive.

The first data set A has a length of 53.5 s and consists of 317 ToF frames and 265
ground truth frames, acquired by a Kinect v1 and a [pmd]vision S3 with the same
angle of view, set apart by a distance of 31.2 cm (see Figure 4.6). It was evaluated
in subsets A1 and A2 as detailed above with an artificially induced time delay of
ground truth between 1 s and 10 s. In the data set, a person walks in and out of
the scene two times, so the initial delay until the first ground truth is available
factors in twice in subset A1. All results have been averaged over all frames of the
according subset.

Processing time per ToF frame was 39 ms, independently of the introduced delay.
Figure 5.21 shows the processing time for ground truth frames. It consists of an
initial base processing time of about 45 ms, spent on point cloud transformation
and correspondence calculation, and a proportional processing time of about
1.7 ms per second of delay for forward calculation. Figure 5.22 and Figure 5.23
show the number of false negatives and the recall for subsets A1 and A2. As
expected, for subset A1 the number of false negatives correlates to the induced
time delay and therefore also affects the recall. The number of false positives is
below 0.12 for all delays and both subsets, resulting in a precision of > 99.7 %.

To evaluate the influence of the spatial position of the Kinect camera providing
the ground truth and the ToF camera, data set B was recorded with data from
Kinect camera 1 and all six [pmd]vision S3 cameras. Figure 5.24 illustrates the
position and numbering scheme of all cameras. It can be seen from the results
given in Table 5.9 that recall is significantly lower for subset B1 compared to subset
B2, especially for cameras 4 and 6. This is caused by the different perspectives
between Kinect and the evaluated ToF cameras, which lead to a low overlap in
the visible field of view, as can be seen from the higher recall result for subset B2

with the same cameras. Figure 5.25 shows the results of forward propagation for
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Figure 5.21.: Ground truth processing time for subset A1 with increasing delay of
the ground truth.
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Figure 5.22.: False negative classifications in latency minimization use case for
subset A1 (dotted line) and subset A2 (continuous line).
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Figure 5.23.: Recall in latency minimization use case for subset A1 (dotted line)
and subset A2 (continuous line).
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1 2 3 4 5 6
Approx. angle compared to Kinect 0◦ 90◦ 90◦ 180◦ 45◦ 135◦

Distance to Kinect (cm) 31 163 192 251 92 189
Recall B1 .71 .71 .80 .66 .80 .64
Precision B1 .99 .96 .97 .88 .97 .92
Recall B2 .90 .90 .91 .96 .91 .96
Precision B2 .99 .90 .97 .88 .97 .96

Table 5.9.: Spatial configuration and accuracy evaluation for six [pmd]vision S3
cameras with different perspectives compared to the Kinect v1 camera
and latency of 1 s.

minimizing tracking latency: While the tracked human is perceived in an outdated
pose by the Kinect v1 camera (red silhouette), points belonging to the current
human pose have been correctly labelled in the ToF camera scene (green points).

Figure 5.24.: Top down view of spatial camera configuration of the [pmd]vision
S3 cameras (brown rectangles) and four Kinect v1 cameras (black
trapezes), numbered for referencing.

5.2.2. Optimization of tracking robustness

To evaluate the capability of the forward propagation algorithm to provide contin-
uous tracking estimates during loss of ground truth, a third data set was recorded
with a length of 151 s in which one person performs different tasks on both sides
of the OR table. The data set contains the fused human tracking data from all cam-
eras of the Kinect v1 camera subsystem as ground truth as well as all ToF frames
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Figure 5.25.: Visualization of forward propagated ground truth for latency mini-
mization. Left: Delayed ground truth from Kinect v1 camera shows a
human pose from the past (red) in ToF scene (gray); right: forward
propagation result shows the tracking estimate corresponding to the
current human pose (green) in same scene.

acquired by each [pmd]vision S3 camera. This represents the full configuration of
the supervision system as shown in Figure 4.21. No artificial delay was induced to
the ground truth for evaluation. For each ToF frame, the corresponding ground
truth frame was manually annotated using the following classification:

• Correct: Ground truth corresponds to the tracked human.

• Loss: No ground truth despite the human being visible in the scene.

• Noise: Ground truth contains the tracked human, but other parts of the scene
are incorrectly also labelled as ground truth.

• Holes: Parts of the human were not detected as ground truth.

The data set was analysed for [pmd]vision S3 cameras 1, 2 and 3 whose locations
w.r.t. to the OR table are depicted in Figure 5.24. As camera 1 and camera 2 observe
different sides of the OR table and camera 3 is positioned without a nearby Kinect
v1 camera, these cameras are representative for all different camera positions in
the ToF camera system. Loss of ground truth was mostly caused by standing still
during scene recording, which is a common reason of failure for human tracking
algorithms that are based on detection of motion in their first stage.

To assess the accuracy of the forward propagation algorithm in this configuration,
all ToF frames, for which a ground truth was available which was annotated as
either “no loss” or “correct”, were evaluated For the “no loss” frames, this resulted
in a precision of .97− .99 and recall of .89− .90. For frames with a “correct” ground
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5.2. Forward propagation of semantic labelling

truth, precision was between .98 − .99 and recall in the range of .87 − .92. Both
precision and recall are similar between the three ToF cameras, showing that the
camera position does not affect the accuracy when ground truth from multiple
perspectives is available. Compared to the evaluation performed with only one
Kinect v1 providing ground truth, recall is on a lower level, whereas precision has
significantly increased.

To assess the capabilities of the system to cope with tracking loss of the ground
truth, all ToF frames were analysed for data set C, even if no ground truth was
present (ground truth marked as “loss”). Results are depicted in Figures 5.26, 5.27
and 5.28 for ToF camera 1 to 3. The Figures show the amount of tracked human
pixels over time. Correspondences to ground truth are shown as yellow bars,
while the tracking estimate calculated by forward propagation is shown as a curve.
The curve is colored green for all frames where ground truth was available and
shown as a dotted blue line where no ground truth was available, but tracking
still continued.
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Figure 5.26.: Results of ToF camera 1 for continuous robust tracking based on
forward propagation despite multiple losses of ground truth.

As can be seen from Figures 5.26, 5.27 and 5.28, multiple losses of ground truth
occur throughout the recorded sequence which are visible as gaps in the yellow
bars, e.g. at frames 67 − 97 or 492 − 594. The according ToF camera continues
tracking until ground truth is recovered, as depicted by the dotted blue line.
Continuation of tracking is successful in all instances of tracking loss, even if no
ground truth information is available for over 20 seconds as it occurred e.g. with
ToF camera 2 around frame 700. Figure 5.29 shows exemplary images from this
frame. The tracked person is seen in a pose aimed at re-acquiring tracking by
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Figure 5.27.: Results of ToF camera 2 for continuous robust tracking based forward
propagation despite multiple losses of ground truth.
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Figure 5.28.: Results of ToF camera 3 for continuous robust tracking based forward
propagation despite multiple losses of ground truth.
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5.2. Forward propagation of semantic labelling

the Kinect v1 camera system. As no ground truth was available for over 8 s, the
forward propagated tracking probabilities are no longer descriptive of the full body
of the tracked person, but this information is recovered by the tracking refinement
steps described in section 4.4.7.5, as can be seen in the extended tracking map. The
removal of boundary pixels, which is clearly visible between the initial tracking
map and the extended tracking map, is a consequence of the filtering for flying
pixels in the ToF preprocessing (see section 4.4.3.3).

Figure 5.29.: Images depicting the tracking state for [pmd]vision S3 camera in
robustness optimization scenario. Left to right: Amplitude map, for-
ward propagated tracking probabilities, initial tracking probability
map and final extended tracking map.

It can further be seen that the tracking outputs of the different cameras complement
each other. While the person is standing on the side of the OR table where the
even-numbered cameras are mounted, i.e. outside of their field of view, tracking
is performed by camera 1 and 3. Between frame 358 and 766, the tracked person
stands on the other side of the table and is then tracked by camera 2 during that
time. Afterwards, camera 1 and 3 resume tracking after the person switched sides
again. The short gaps between tracking are caused by the lack of coverage at the
ends of the OR table in the realized setup, as depicted in Figure 5.11.

In conclusion, forward propagation of semantic labelling and its application to
human tracking show very good results. Due to the separated processing pipelines,
the processing time for providing the extended tracking map is constant and
independent of the delay of ground truth. Taking into account the latency of
the first level camera system, the total latency until an extended tracking map is
calculated lies between 165 ms and 225 ms for a ground truth delay of up to 10 s.
This corresponds to an average latency reduction of up to factor 50. Experiments
show good precision and recall for scenarios that include ground truth from a
single perspective only and better results if a fused ground truth from multiple
viewpoints is available. Analysis of the capability to provide continuous tracking
during loss of ground truth shows that the system is stable against intermittent
tracking and can cover losses of ground truth for as long as 20 s.
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5.3. Safety concept

5.3.1. Shape cropping performance

The GPU-based implementation of the shape cropping algorithm was evaluated in
a synthetic setting. The virtual robot was positioned inside a 3D grid of equidistant
points in a fixed volume and performed an incremental motion in the second joint
from -90◦ to +90◦ over 1.000 steps. In each step, shape cropping of the robot
was performed using the single-threaded CPU implementation as well as the
parallelized GPU implementation. The average duration of each operation was
calculated over all steps. To take into account the performance penalty of data
transfer between host memory and graphics card memory, which is limited by the
PCI Express bandwidth, the point cloud of the grid was transferred to the graphics
card memory in each iteration and added to the GPU calculation time. The test
was repeated for five different grid spacings (1 cm – 5 cm). Table 5.10 shows the
results.

The test was performed using an NVIDIA GTX 480 GPU and an AMD Athlon
Phenom X6 at 3.2 GHz. To estimate the performance on an up to date GPU, the
specifications of the GTX 480 were compared to the current Titan X graphics card,
also manufactured by NVIDIA (see Table 5.11). Based solely on these specifications
and without taking potential efficiency improvements into account, the bandwidth
of the Titan X is doubled compared to the GTX 480 and the processing speed is
higher by a factor of 9.14. Based on these values, a theoretical performance
estimate of the shape cropping algorithm has been calculated which is also shown
in Table 5.10.

Grid spacing 1 cm 2 cm 3 cm 4 cm 5 cm
Number of points 2.4× 106 3.0× 105 89.780 37.500 19.200
CPU 1.630 ms 195 ms 58.6 ms 25.7 ms 13.1 ms
GPU (GTX 480) 114 ms 18.0 ms 7.96 ms 4.55 ms 4.37 ms
GPU (Titan X, est.) 25.4 ms 3.78 ms 1.45 ms 0.74 ms 0.72 ms

Table 5.10.: Performance evaluation of shape cropping algorithm using a synthetic
scene with different numbers of points in a fixed volume.

GTX 480 Titan X
Host bandwidth 16 GB/s 32 GB/s
CUDA cores 480 3.072
Clock speed 700 MHz 1 000 MHz

Table 5.11.: Main specifications of GTX 480 and Titan X
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5.3.2. Robot localization

Evaluation of the proposed passive and active robot localization was performed for
all available camera systems. Prior to evaluation, a ground truth was established
using the ARTtrack2 OTS: For 15 different joint configurations of the robot arm,
the base position of the robot was calculated from the tracked endeffector pose
using forward kinematics. The mean of all 15 resulting base positions was then
used as ground truth. Based on the extrinsic calibration between each camera and
the ARTtrack2 OTS, as obtained by the projection-based registration, the Euclidean
distance between the localization result of each camera system and the ground
truth was then calculated for each evaluation and interpreted as localization
error.

To evaluate the maximal achievable accuracy, localization was performed with
robot arms positioned in the central region of the supervised scene, where the
k-reliable coverage is maximized for all camera systems. As before, the PMD
camera system is denoted with PMD (P) when operated in performance mode and
PMD (Q) when operated in quality mode.

Figure 5.30.: Scene with two LBRs mounted to the sides of an OR table (left) and
the resulting passive localization with PMD camera system (center,
right), shown as CAD models of the robot. Inliers are depicted in blue,
outliers in red and neutral scene points in green and yellow.

5.3.2.1. Passive localization

To evaluate the accuracy of passive robot localization, two LBRs were mounted
sideways to an OR table (see Figure 5.30, left). Passive localization was performed
by using the OR table as a landmark to reduce the size of the search space as de-
scribed in section 4.5.2.1. Using the base positions detected by passive localization,
localization optimization was performed in order to (i) match the detected robot
bases with actual robot arms, (ii) correct the orientation of the detected robot poses
and (iii) optimize the detected positions (see section 4.5.2.2).

Table 5.12 shows the resulting accuracy of all camera systems for passive localiza-
tion of undraped robot arms. For the PMD camera system, the initial localization
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Initial error Final error
mean min. max. mean min. max.

PMD (P) 36 mm 25 mm 47 mm 36 mm 25 mm 47 mm
PMD (Q) 32 mm 24 mm 40 mm 32 mm 24 mm 40 mm
Kinect v1 113 mm 48 mm 186 mm 53 mm 28 mm 75 mm
Kinect v2 17 mm 9 mm 26 mm 19 mm 12 mm 26 mm

Table 5.12.: Accuracy of passive localization of undraped robot arms with subse-
quent optimization for all camera systems.

Initial error Final error
mean min. max. mean min. max.

PMD (P) 32 mm 21 mm 42 mm 32 mm 21 mm 42 mm
PMD (Q) 59 mm 16 mm 211 mm 27 mm 16 mm 39 mm
Kinect v1 162 mm 97 mm 233 mm 67 mm 55 mm 79 mm
Kinect v2 97 mm 39 mm 140 mm 32 mm 19 mm 42 mm

Table 5.13.: Accuracy of passive localization of draped robot arms with subsequent
optimization for all camera systems.

is already at the same accuracy as the final localization, which means that the opti-
mization steps performed during matching of the robot arms and their orientation
already resulted in the optimal position detection. The quality mode of the PMD
camera system shows an increase in accuracy of approximately 10 % as compared
to the performance mode.
Concerning the Kinect v1 camera system, there is a large initial error of over
11 cm. The optimization steps performed between initial localization and final
localization visibly improve the accuracy by 70 %. However, the resulting accuracy
is still worse than that of both other camera systems.
For the Kinect v2 camera system, the accuracy of both initial localization and final
localization is comparatively high and clearly exceeds the accuracy of both other
camera systems.

The same evaluation as above has been performed for draped robot arms. Results
are shown in Table 5.13. For the PMD camera system, filtering of outliers was
performed with an outlier rejection factor of 1.0, which means that all outliers with
an amplitude smaller than the mean amplitude of all inliers were removed. As
found in section 5.1.5, the sterile draping actually increases the visibility of the
LBR for the PMD cameras, which results in a slightly higher final accuracy than
without draping. Again, quality mode shows a slightly better final accuracy than
performance mode.
The Kinect v1 camera system repeatedly failed to detect the robot base because
of the bad visibility of the draping material around the robot bases. To be able to
perform the evaluation, a sheet of paper was attached to the draped robot bases,
which increased the visibility. Results of initial localization are therefore partly
based on manual intervention and only given for reference. Even with artificially
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raised visibility, the accuracy of the Kinect v1 camera system is clearly worse than
without draping. For both initial and final localization, it has the largest error by a
factor of two.
The Kinect v2 camera system also performs less accurate than in the undraped
evaluation, especially in the initial localization, due to the draping that surrounds
the robot bases as depicted in Figure 5.31. For final localization, results show a
slightly lower accuracy than the PMD camera system in quality mode.

Figure 5.31.: Draping severely affects the perceived robot shape as shown in cross-
sections of scene with undraped robot (left) and draped robot (right),
both acquired by Kinect v2 camera system.

5.3.2.2. Active localization

Active localization has been evaluated using spatial change detection with the sub-
sequent optimization sequence as described in section 4.5.2.1 and section 4.5.2.2.
Three different robot configurations were used in step 4 of the optimization se-
quence. While a per-camera evaluation was performed for both Kinect camera
systems, the PMD camera system was evaluated as a whole due to the low FoV of
the [pmd]vision S3 cameras.

Table 5.14 shows the results of active localization for undraped robot arms. Com-
pared to the landmark-based initial detection as employed in passive localization,
spatial change detection results in a constant, higher initial error for the PMD and
Kinect v1 camera system.

Comparison of the different optimizations performed with passive localization
(based on only one robot configuration) and active localization (based on multiple
different robot configurations) shows an improvement of accuracy by approxi-
mately 21 % for both the PMD camera system and the Kinect v2 camera system.
At the same time, the maximum error decreases by 45 % and 30 % for the PMD
camera system in performance and quality mode, by 23 % for the Kinect v1 camera
system and by 30 % for the Kinect v2 camera system. Therefore, the range of error
also decreases by between 64 % and 87 %.
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Initial error Final error
mean min. max. mean min. max.

PMD (P) 93 mm 92 mm 95 mm 28 mm 25 mm 30 mm
PMD (Q) 40 mm 36 mm 45 mm 25 mm 22 mm 27 mm
Kinect v1 79 mm 68 mm 97 mm 55 mm 52 mm 58 mm
Kinect v2 18 mm 16 mm 19 mm 15 mm 13 mm 18 mm

Table 5.14.: Accuracy of active localization of undraped robot arms with subse-
quent optimization for all camera systems.

5.3.2.3. Discussion

To assess the feasibility of the obtained results for practical use such as envisioned
in this thesis, the actual requirements need to be considered. Specifically, two
safety features have been proposed that are based on the robot localization: (i)
The verification of the correct setup of the surgical robot system according to a
preoperatively determined plan and (ii) the application of Shape Cropping for
detecting impending collisions, which requires an initial localization of the robot’s
position.

The use of robot localization as a prerequisite for detection and avoidance of
impending collisions is discussed in section 5.3.3.

The verification of the correct setup of a surgical robot system is necessary to
guarantee that it conforms to the pre-planned positions, so that the reachable
workspace of the surgical instruments encompasses the full workspace required
by the surgeon. For the OP:Sense system, which was used for all evaluations, an
analysis of the reachable workspace with pivot restrictions has been performed
by Hutzl et al. [63]. As a medical use-case, 20 iterations of a manual rectum
resection performed on the OpenHELP-phantom [86] were recorded, annotated
and segmented into different phases. The instrument poses of multiple phases
were evaluated with different criteria for maximizing the reachable workspace,
resulting in a list of ten best-ranked pivot positions relative to the robot base. It was
found that these optimal pivot positions vary by +/− 65 mm on the robot’s x-axis
and +/− 25 mm on its y-axis, while providing near identical reachability of the
workspace among all top-ranked pivot positions (0.0103− 0.0141 on a normalized
scale between 0 to 1 with 0 as the optimum).

Comparison of the achieved localization accuracy with these findings shows that
the localization accuracy of both the PMD camera system and the Kinect v2 camera
system in fact surpasses the practical requirements of the OP:Sense system. This
holds true for both passive draped/undraped and for active localization.
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5.3.3. Collision avoidance

The performance of the proposed system was evaluated in the OP:Sense setup in
different experiments. All experiments were performed using the PMD camera
system for acquiring the scene, as it is the only camera system that can reliably
filter the sterile draping as evaluated in section 5.1.5. An LBR was mounted
to the side of the OR table. Passive localization was performed to obtain the
robot base position which is required for employing Shape Cropping for detection
of impending collisions. The robot was set to repetitively execute pre-defined
trajectories. Based on the acquired scene, the robot base position and the current
robot pose, Shape Cropping was carried out for detecting impending collisions as
described in section 3.2.4.2.

5.3.3.1. Collision avoidance performance

For evaluating the performance of collision avoidance, the robot performed a
swinging motion over the OR table with different joint speeds limit. An obstacle
was placed at a fixed location on the OR table, blocking the trajectory of the
endeffector of the robot. When the obstacle violated the safety zone and therefore
an impending collision was detected by Shape Cropping, a stop of the robot motion
was triggered. For assessing the performance, the resulting distance between the
end-effector of the robot and the obstacle were annotated (see Figure 5.32) as well
as the Cartesian velocity of the endeffector at the time when the robot stop was
triggered. The joint velocity of the robot was increased in steps of 0.05 rad. For
each velocity, 10 iterations were performed. As the result depends on both the
accuracy of the obstacle detection and the braking speed of the robot, which is
limited by the acceleration per joint, the experiment was conducted twice with
different acceleration limits.

Figure 5.32.: Remaining distance (white) between robot endeffector and obstacle
(green) after an impending collision was avoided by stopping the
robot’s motion.
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Figure 5.33.: Remaining distances to obstacle at variable robot end effector veloci-
ties with different acceleration limits.

Figure 5.33 shows the resulting distances between robot and obstacle over different
endeffector velocities. At an endeffector velocity of up to 250 mm/s, which corre-
sponds to the maximum allowed velocity for human-robot interactions specified
in ISO 10218-1 and ISO 15066, the robot stopped with a remaining distance of at
least 60 mm to the obstacle. This was achieved independent of the acceleration
limits. With increasing velocity of the end effector, the distance to the obstacle
decreases. Depending on the acceleration limits, collisions with the obstacle were
observed at an end effector velocity of 0.78 m/s and 1.15 m/s, respectively. In both
cases, the collision was consistently narrow, i.e. the robot stopped within the first
millimeters of impact.

5.3.3.2. Filtering of sterile draping

In the following, the term phantom collision will be used to denote cases where an
impeding collision is “detected” despite the fact that no obstacle was close to the
robot arm. This especially occurs if the draping is not filtered completely and is
therefore classified as an object.

Obstacle avoidance The experiment described in the previous section was
repeated with the robot arm covered in sterile draping (see Figure 5.34) in order to
assess both the effects of sterile draping on collision detection and the effectiveness
of the proposed approach to overcome these effects by amplitude-based filtering
(see section 5.1.5). For each trial, the robot performed a fixed trajectory at different
velocities with 10 iterations per velocity. Filtering of draping was performed
as described above with varying outlier rejection factors between each trial. If
a phantom collision was detected, the robot was driven back into its starting
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Figure 5.34.: Motion sequence performed by draped robot for evaluation of effects
of surgical draping upon detection of impending collisions.

position and the next sub-iteration was started. Therefore, a maximum of 10
phantom collisions per sub-iterations could be perceived. The acceleration limit
was set to 6 rad/s2 for this and the subsequent experiment.
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Figure 5.35.: Percentage of phantom collisions at variable robot end effector veloc-
ities with varying outlier rejection factors between 0.25 and 0.85.

Figure 5.35 shows the resulting percentage of phantom collisions per iteration for
different outlier rejection factors. It is clearly visible that the number of phantom
collisions decreases with an increased outlier rejection factor, until no phantom
collisions are observed at a factor of 0.85. For all outlier rejection factors, the
amount of phantom collisions at an endeffector velocity in the range of approx-
imately 0.35 m/s to 0.60 m/s is significantly lower than at other velocities. It is
assumed that based on the specific configuration of the PMD camera system and
the reflectivity of the surgical draping, draping which moves at this velocity range
is more susceptible to being detected as an unreliable measurement by the PMD
cameras and therefore eliminated during low level processing (see section 4.4.3.3).
However, this phenomenon has not been investigated further as its velocity range
is clearly outside the considered velocity range of up to 0.25 m/s.

Further, analysis of all iterations in which no phantom collision was triggered
showed that the average remaining distance to the obstacle was slightly smaller
compared to the previous experiment with the non-draped robot arm. At a velocity
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of about 250 mm/s, the measured remaining distance was in the range of 55 mm –
59 mm. The first collision with the obstacle occurred at velocities of approximately
1 m/s.

Phantom collision analysis The previous experiment was designed with a
focus on evaluating the detection and subsequent avoidance of collisions. As the
robot performed a swinging motion towards the obstacle, only the first joint of the
robot was moved. Therefore, the surgical draping did not change its shape as it
does when all joints of the robot arm are moved.

Figure 5.36.: Motion sequence performed by draped robot for evaluation of effec-
tiveness of draping filtering for prevention of phantom collisions.

A second experiment was therefore set up with the goal to evaluate the robustness
of the amplitude-based filtering of surgical draping in presence of different draping
shapes. The robot iterated between four different poses with completely different
joint configurations as seen in Figure 5.36, without any obstacles present on the
trajectory. Each phantom collision was annotated and classified as belonging to
either the endeffector, elbow or basis of the LBR. Robot motion was performed
continuously for a total duration of 127 s without stopping in case of detected
impending collisions. For each evaluated outlier rejection factor, the percentage of
Shape Cropping iterations in which a collision was annotated was calculated out
of the total number of Shape Cropping iterations.

The resulting percentages of phantom collisions are shown in Figure 5.37. As
expected, the percentage of phantom detections decreases with an increased
outlier rejection factor. At the elbow, the constant changing of the joint causes the
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Figure 5.37.: Influence of outlier rejection factor on amount of detected phantom
collisions at different segments of the robot.

biggest variations in draping shape, which is reflected in the high percentage of
phantom collisions. At the robot basis, the percentage of phantom collisions stays
almost constant for outlier rejection factors of up to 0.5. This is due to the fact that
at the robot basis, the draping is relatively close to the robot, resulting in a higher
amplitude which is removed only for stronger outlier rejection factors.

In accordance with the previous results, an outlier rejection factor of 0.85 and
above successfully prevents almost all phantom collisions. As the robot performs
exaggeratedly large motions in this experiment compared to real-life scenarios, it
is justified to assume that application to real-life scenarios with more restricted
motions, e.g. MIRS, will exhibit a similar performance.

5.3.4. Feedback to OR personnel

5.3.4.1. Attention direction

To evaluate the effectiveness of attracting and directing attention, e.g. to potentially
hazardous situations, a trial was set up in which the participants performed a
given task under different conditions in an interventional scenario.

Trial description The task of the participants was to annotate a series of marked
labels on a clinical phantom. To annotate a label, participants had to place the
tip of an NDI pointer on the center of a label and press a pedal on a foot switch.
The according location was then illuminated by the projector. If necessary, the
location could be corrected by removing the last annotation using a second pedal.
Throughout the trial, participants stood on the right side of the robot arm depicted
to the right in Figure 5.38.
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Each participant completed the trial in the following order three times with differ-
ent goals:

1. Task focus: Participants were instructed that their task was to test the combi-
nation of foot pedal and NDI pointer for performing accurate annotations.
The stated goal for the participants was to annotate 40 numbered circles
accurately in ascending order. Each illumination needed to cover the full
area of the respective circle. The total time for correctly annotating all labels
was visibly recorded and named as the evaluation metric. It was emphasized
that accuracy was paramount to discourage fast and sloppy annotations.
Further, participants were instructed to verbally communicate if they noticed
something unusual with the projection.

2. Environment focus: The trial was repeated with the same setup, but partic-
ipants were instructed to keep an eye on their surroundings and verbally
announce if they perceived visual changes.

3. Environment perception: Participants were instructed to not perform any
actions, but simply watch out for visual changes and announce them as soon
as they could detect them.

During each iteration, a visual cue in form of a square of about 7 cm × 7 cm was
projected into the scene in different locations. To maximize its conspicuity, the
projection properties were set according to the recommendations of [45] , i.e. lime
green projections flickering at a rate of 5 hz. A fixed series of twelve projections of
cues was performed during each iteration.

Results The trial was conducted with eight volunteers. During the first itera-
tions with task focus, participants were not aware of the projected visual cues and
instead focused on the given task. When being asked in a vague way if they had
seen anything outside their task, most participants recalled seeing a flickering
shape once or twice. However, they were not able to give more detailed spec-
ifications. In the enviromment focus iteration, participants noticed and verbally
communicated the projection of ≈ 70 % of the projected cues that were visible to
them as determined during the environment perception trial. When asked about the
change of number of projected cues between the three iterations, all participants
indicated that based on their perception, “more” or “many more” cues had been
projected in latter iterations.

It has to be noted that one cue, which was supposed to be projected onto the edge
of the OR table, was instead projected onto the head of the participant in multiple
iterations as participants had reached forward to annotate a label. Even with a
small sample size, this highlights the susceptibility for occlusion when only one
projector is employed. In reverse, it affirms the necessity of supervising the OR
field with multiple 3D cameras, as both projector and cameras share the same
predicament concerning occlusions.
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Generally, the results suggest that it is applicable to attract the attention of OR
personnel by projecting visual cues into the scene. However, the personnel needs
to be aware that such a safety feature is being used, as intense focus on a specific
task prevents perception of projected cues at their peripheral vision, even in
confined spaces such as an OR table.

Figure 5.38.: Evaluation scenario for feedback to OR personnel. On the OpenHELP
phantom, marked labels and the augmentation of the pose of an
instrument inside the phantom and the vision cone of the endoscope
are visible.

5.3.4.2. Projection of surgical instruments

To evaluate whether projection of the poses of surgical instruments onto the patient
can assist in intuitive and effective performance of tasks related to MIRS, a trial was
set up where participants had to perform instrument insertion in a laparoscopic
phantom.

The pose of the endoscope as well as its frustum were projected onto the surgical
phantom, as depicted in Figure 5.38. When the laparoscopic instrument was
inserted into the trocar by the participant, it was also projected onto the phantom
as a line between trocar point and instrument tip, using vertical surface mapping as
described in section 4.6.3. Further, the depth of the instrument tip and its distance
to the optical axis of the camera were visualized as described in section 4.6.5.
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Trial description The task of the participants was to insert a laparoscopic instru-
ment through a marked trocar point so that the instrument tip became visible for
the endoscopic camera. The instrument was attached to an LBR which was guided
by the participant using hands-on mode.

Each participant completed the trial two times under different conditions:

1. Augmented insertion: The poses of the instrument and of the endoscope were
projected onto the laparoscopic phantom as described above.

2. Control insertion: No augmentation was performed. The participants had
to rely on their spatial sense alone to guide the surgical instrument into a
position where its tip was visible in the camera image.

To avoid learning effects, the order of insertion was randomly pre-assigned to the
participants so that both augmented and control insertion were performed first
by half of the participants. Directly after completing each insertion, participants
filled out the User Experience Questionnaire (UEQ) [103], which is a subjective and
multidimensional questionnaire intended to assess the quality of experience of
interactive products. Participants were asked to rate their experience with the
given task and not rate their overall experience with the surgical robot system.

Results The trial was conducted with eight volunteers. Their user experience
was evaluated based on the UEQ obtained after the augmented insertion. Fig-
ure 5.39 shows the user experience for the augmented insertion task as absolute
values on six scales. Each scale ranges from −3 to +3, which corresponds to a
“horribly bad” to “extremely good” user experience [103]. The UEQ contains a
benchmark data set with data obtained of 163 product evaluations, which allows
to compare the measured user experience with a large number of products. The
results of this comparison are depicted in Figure 5.39 as colored ranges on the
respective scales and categories. The achieved categories are to be interpreted as
follows:

• Excellent: In the range of the 10 % best results of all products of the benchmark
data set.

• Good: 10 % of the results in the benchmark data set are better and 75 % of the
results are worse.

• Above average: 25 % of the results in the benchmark data set are better than
the result for the evaluated product, 50 % of the results are worse.

While all six scales show good results, the results for “novelty” and “perspicuity”
stand out. The comparatively low rating of “novelty” can be expected, as the
general principle of SAR is long known and participants did not have previous
experience with surgical robot systems. The excellent result for “perspicuity”
confirms that the evaluated augmentation is an effective way of visualization,
contributing to an intuitive and shared understanding for potentially multiple
observers.
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Figure 5.39.: Results of the user experience with projection of surgical instrument
in laparoscopic scenario.

To verify that participants actually rated the difference between augmentation and
non-augmentation, instead of rating the overall user experience of the surgical
robot system for the given task, a direct comparison between the user experience
in control and augmented insertion was performed. Figure 5.40 shows the results
of the comparison. Results clearly show the difference between augmented and
control insertions, confirming that the results discussed above directly assess the
user experience of the augmentation.

Due to the low sample size, the confidence intervals for each scale are large.
However, they only overlap for “stimulation” and “efficiency”, meaning that for
all other scales the difference is significant on the 5 % level.
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Figure 5.40.: Comparison of user experience between insertion task without (blue)
and with (green) augmentation of surgical instruments.
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6. Discussion, Outlook and
Conclusions

This chapter provides a summary and retrospect of this thesis. The major findings
and results of this work are highlighted and related to the research questions that
were put forward in chapter 1.

6.1. Discussion

The evaluations and results presented in chapter 5 show that the proposed system
was successfully implemented and fulfills the goals associated with monitoring the
safety state of a surgical robot system. The following sections give a brief overview
of the developed methods and discuss the achieved results of this thesis.

6.1.1. Supervision system

To supervise the OR, a 3D camera system has been realized that consists of two
subsystems with different purposes. Both systems consist of multiple 3D cameras
and can acquire a real-time representation of the OR as point clouds. The first level,
a PMD camera system consists of seven industrial-grade ToF cameras that offer
full external control and configuration and are therefore suitable for safety-critical
applications. Their lateral resolution is low, as is the case with most ToF cameras.
The second level camera system consists of four Kinect v1 cameras that offer a high
lateral resolution, but do allow for external configuration or synchronization.

For comparison, all algorithms have also been evaluated using a separate camera
system consisting of four recent Kinect v2 cameras that provide a higher depth
resolution and a higher FoV than both other types of camera. However, the
Kinect v2 cameras exhibit regular severe crosstalk between each other and offer
no external control for synchronization and are therefore not applicable in the
proposed supervision system.

To analyze the possibility of operating multiple 3D cameras in the same volume
that are based on active measurement principles, i.e. emit IR light, extensive tests
have been performed. It has been shown that the crosstalk between multiple
[pmd]vision S3 cameras can be effectively eliminated using a time- and frequency-
multiplexing scheme. No crosstalk has been observed between PMD and Kinect v1
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cameras, confirming the feasibility of the proposed approach to combine both types
of cameras into one camera system. Further, results indicate that the simultaneous
use of the ARTtrack2 OTS does not influence the depth acquisition by the 3D
camera systems.

In order to allow an easy and practicable registration for 3D cameras as well as
other devices such as optical tracking systems, a semi-automatic projection-based
method for 3D camera registration has been proposed and realized. It is specifically
designed for straightforward use in an OR setting and does not require special
equipment such as checkerboards or other registration targets. Instead, features
are projected into the scene using visible light and detected by each camera. To
assess the registration accuracy of the proposed method that can realistically be
achieved in a real OR, evaluation has been performed using solely an OR table
as projection surface which is in the shared working volume of all cameras of the
proposed supervision system.

Registration results have been analyzed in section 5.1.2.2 in different combinations,
based on ground truth obtained by a FARO platinum measurement arm. As
expected, the low-resolution PMD cameras exhibit the highest registration error
with a median error of 19.7 mm, followed by the Kinect v1 cameras with a median
error of 15.7 mm. The Kinect v2 cameras show the best registration results with a
median error of 7.3 mm. This is due to both their high lateral and depth resolution,
allowing for precise localization of the projected feature, as well as their high FoV
that enables the detection of about 80 % of the projected features.

In a recent work by Beyl [9], who calibrated the same Kinect v1 and Kinect v2
camera system using different calibration schemes, a median registration error be-
tween 20 mm and 27 mm per camera is reported for the Kinect v1 using a pairwise
registration. For the Kinect v2, Beyl performed a checkerboard-based registration
w.r.t. an external OTS, resulting in a median error of between 5.6 mm and 10.3 mm.
Comparison of the registration methods of Beyl and the proposed projection-based
registration shows that the proposed method achieves similar or better registra-
tion results while requiring significantly less involvement during the registration
procedure. If only 3D cameras with a high lateral resolution need to be registered,
further improvements can be expected by projecting more sophisticated features
that allow for detection with sub-pixel accuracy.

A coverage analysis of the different camera systems shows that the PMD camera
system only covers about 80 % of the analyzed workspace with gaps at the short
end of the OR table, while the Kinect camera systems achieve near or exactly 100 %
coverage of the working volume. Similarly, the Kinect v2 camera system exhibits
the highest k-reliable coverage by far. These results underline the need for 3D
cameras with a high FoV for applications in safe human-robot interaction where
redundant coverage is required in crowded environments.

Forward propagation of semantic labelling was brought forward in this thesis
to bridge the semantic gap between the first level scene model and the second
level scene model. This has been achieved and evaluated with different use
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cases, i.e. latency minimization and optimization of tracking robustness. Latency
minimization shows a high precision and recall, even for spatially separated
cameras and high delays of up 10 s. Application to the optimization of tracking
robustness shows that forward propagation allows to continue tracking even when
gaps in the ground truth occur for over 20 s.

6.1.2. Safety concept

In order to use a 3D camera-based system for monitoring safe human-robot in-
teraction, it has to be made sure that the camera system can reliably perceive
the robot and its surroundings. As surgical robots are covered in sterile draping
during interventions, the effects of these drapings on image acquisition by the 3D
cameras were evaluated in different experiments. The results show that despite
their transparent material, the draping reflects enough IR light to be registered as
valid depth measurements by all camera systems. While the ToF-based PMD and
Kinect v2 cameras can accurately perceive the sterile draping, it interferes with the
depth perception of the Kinect v1 cameras, which are based on structured light.
This results in an increased flickering of the respective measurements.

Based on the hypothesis that distance measurements corresponding to draping
result in a lower signal strength, the amplitude map obtained by the PMD cameras
was analyzed for differences in signal strength related to draping. It was found
that the amplitude of measurements that correspond to draping is on average
40 % lower for the examined combination of robot and draping compared to the
amplitude of measurements of solid objects, even as seen through draping. While
the exact results will vary for different surgical robot systems, the difference is
high enough to allow for filtering depth measurements that correspond to draping
based on their amplitude.

The effectiveness of amplitude-based filtering of draping was confirmed in the
scope of collision avoidance tests. Analysis of different rejection factors for filtering
of sterile draping shows that the PMD camera system can successfully filter the
effects of sterile draping, thereby preventing “phantom collisions” with draping
detected as objects close to the robot. At a rejection factor of 0.85, no phantom col-
lisions were detected. The performance of collision avoidance slightly decreased,
resulting in a smaller remaining distance to objects blocking the trajectory of the
robot of ∼57 mm at an endeffector velocity of 250 mm. The reliability of amplitude-
based filtering of draping was also confirmed by analysing phantom collisions at
large-scale motions of the LBR that cause more wrinkling of the sterile draping
than can be expected in actual applications such as MIRS. In this experiment,
occasional phantom collisions still occurred at a rejection factor of 0.85, but were
completely eliminated using a rejection factor of 1.0.

Further, during collision avoidance tests it was found that at an endeffector speed
between 0.35 m/s and 0.6 m/s, the number of phantom collisions decreased among
all outlier rejection factors. It is assumed that this is an effect of the specific
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combination of cameras, their integration times and the reflectivity of the sterile
draping that leads to rejection of the according distance measurements as motion
blur effects for this velocity range. However, this has not been researched further
because this velocity range is above the limits for safe human-robot interaction
according to ISO 10218-1.

For verifying the robot positions w.r.t. accordance to preoperative planning, differ-
ent localization methods based on Shape Cropping were realized and evaluated in
terms of accuracy. The resulting localization error lies in the range of centimeters
for all camera systems and for both localization methods, with and without sterile
draping. The Kinect v2 camera system consistently achieves the best accuracy
with an error of 19 mm and 15 mm for passive and active localization, being second
only to the PMD camera system in quality mode for localization of draped robots.
Here, the error of the Kinect v2 cameras system of 32 mm is larger than the error
of the PMD camera system of 27 mm. This again shows that the approach to
filter sterile draping with the PMD cameras effectively preserves quality of their
distance measurements, as opposed to the other camera systems where accuracy
decreases in the presence sterile draping. Over all localization methods, the Kinect
v1 camera system is the least accurate system for robot localization.

Comparing the accuracy of active and passive localization, it is noteworthy that
active localization achieves only a lower initial accuracy, but results in better final
accuracy as multiple optimization steps with different robot poses are performed.
Similarly, the error range of the final active localization is significantly smaller
than for passive localization, which does not move the robot during localization.
Therefore, it is proposed to employ active robot localization when possible, e.g.
when the robot is mounted to a fixed position in the room before the start of
an intervention as proposed for the scenario of the European research project
ACTIVE.

To enable a qualitative assessment of the achieved localization accuracy, compar-
ison was performed to a recent analysis [63] of the influence of the pivot point
on the reachable workspace of the LBR. According to Hutzl et al., the positions
of optimal pivot points for the LBR vary by as much as ±65 mm and ±25 mm
on the x- and y-axis of the robot. This confirms that the achieved localization
accuracy of both the Kinect v2 and the PMD camera system fulfil the accuracy
requirements of the specific surgical robot system, the OP:Sense platform, with
which all evaluations were performed.

6.2. Future research

This thesis presents a system concept for the safe usage of surgical robot systems in
the OR of the future. The current realization of the system concept with PMD and
Kinect v1 cameras already shows its applicability to safe human-robot cooperation
in the OR. It opens the way to future research, such as:
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• Technical enhancements: With recent developments in the field of range imag-
ing, the achieved results could be further improved. As an example, a higher
field of view of the cameras directly contributes to the redundant coverage
of the system, thereby increasing its robustness against occlusions which in
turn improves its applicability for safety-related applications. Higher frame
rates and/or lower latencies of the cameras would directly increase the per-
formance, resulting in increased reaction times to adverse situations. Due
to the modular nature of the system, such enhancements would not require
extensive modifications, but could directly be integrated and evaluated.

• Technical integration into the OR: Due to the size of the cameras and the
requirement of positioning them in multiple locations over and around
the OR table for preventing occlusions, the current system occupies a not-
too-small volume despite the spatial separation of data acquisition and
processing. With current developments towards miniaturization, it might
become valid to integrate miniature range imaging devices directly into
the OR, for example in the ceiling and the operation lamp. Especially the
integration into the OR lamp shows promise, as it is usually positioned by
the surgeon above the situs with a clear field of view to patient, OR personnel
and surgical robot system.

• Semantic integration into the OR: Integrated operating rooms of the future
promise an integration of medical devices not only on a technical, but also
on a semantic level. Semantic integration of the supervision system and the
SAR system would offer new possibilities for both localizing medical devices
in the OR, e.g. for the task of OR setup and management, and relaying
information from medical devices to the OR personnel by visualization
directly in the scene.

• Case studies with upcoming surgical robot systems: The idea of interoperability
with different surgical robot systems forms the core of the proposed system
concept. The actual integration with different surgical robot systems and
practical assessment of the resulting advantages and/or shortcomings in a
clinical environment would therefore be the logical step.

• Integration with a knowledge-base: The current embodiment of the system only
works solely on geometric scene information, which is acquired and analyzed
within the system. Integration of a knowledge base could enable higher-level
reasoning about the perceived scene, allowing for scene interpretation and a
better support of the OR personnel.

• Application to non-medical scenarios: The proposed system concept was de-
veloped and designed based on the requirements of an OR. Nevertheless,
both the full system concept and the different contributions, such as forward
propagation of semantic labelling, are applicable to a wide range of topics
beyond the OR.
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6.3. Conclusions

In this doctoral thesis, a 3D camera-based system for safe and intuitive usage of
surgical robot systems has been developed, based on state-of-the-art range imaging
cameras and novel algorithms. The system enables perception of the environment
of a surgical robot using multiple 3D cameras and can detect potentially harmful
interactions between the robot and humans, i.e. the OR personnel and the patient,
as well as its environment. This allows the OR personnel to completely focus
on their medical task without having to divert attention to check the correct
functioning of the surgical robot system. Therefore, the proposed system has the
potential to contribute to the patient outcome of robot-assisted interventions.

In summary, the main contributions of this thesis include:

Supervision system A concept for a modular, distributed 3D camera system
is presented that allows to acquire a 3D scene in real-time from multiple
points of view. Realization and analysis of the system show the feasibility for
applications in safe human-robot interaction. Due to the spatial separation
of data acquisition and processing, the system has a small footprint that
renders use in a surgical environment possible. The system concept is not
limited to the surgical domain, but has the potential to be applied to various
scenarios.

Shape Cropping algorithm Shape Cropping allows to construct a virtual safety
zone around arbitrary robot manipulators, solely based on pointclouds of the
surrounding scene. In this thesis, Shape Cropping is shown to be applicable
to safety-related aspects, where it can ensure that potential collisions are
detected before they occur, as well as to localization of robots in unknown
scenes and redundant supervision of correctness of the robot’s poses.

Forward propagation of semantic labelling Within this thesis, forward propa-
gation of semantic labelling is employed to bridge the semantic gap between
the two camera subsystems: The human tracking information provided by
one camera system is propagated forward to the other camera system. By
design, the algorithm is not limited to applications with multiple 3D camera
systems or to human tracking. It allows for forward propagation of data
between arbitrary data sources, requiring only a known mapping between
the data sources.
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Intuitive feedback to OR personnel A projector-based system for SAR is real-
ized and fully integrated with the proposed supervision system. It allows
providing information to the OR team in an intuitive and natural way by
projecting information directly into the scene, where it is visible for all mem-
bers of the OR team and can thereby facilitate the communication flow and a
shared situation awareness.

Analysis of the effects of sterile draping on perception by 3D cameras This
thesis conducts the first analysis of the effects of sterile draping, in which
surgical robots are covered during interventions, on their perception by 3D
cameras. This is important for all future work on human-robot interaction in
the OR where 3D cameras are employed for scene acquisition and analysis.
A method for filtering sterile draping from scenes acquired by PMD cameras
is devised and experimentally confirmed, demonstrating its applicability to
safe human-robot interaction in the OR.
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A. Interference analysis

(a) standalone (b) with ARTtrack2

(c) with pmd[vision] CamCube 2.0 (d) with Kinect v1

(e) with unmultiplexed S3 cameras (f) with multiplexed S3 cameras

Figure A.1.: Distance observed over 100 iterations by pmd[vision] S3 for static
target at a distance of 1.13 m in presence of different other cameras
and systems.
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(a) standalone (b) with ARTtrack2

(c) with pmd[vision] S3 (d) with Kinect v1

(e) with unmultiplexed S3 cameras (f) with multiplexed S3 cameras

Figure A.2.: Distance observed over 100 iterations by pmd[vision] CamCube 2.0
for static target at a distance of 1.07 m in presence of different other
cameras and systems.
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A. Interference analysis

(a) standalone (b) with ARTtrack2

(c) with pmd[vision] S3 (d) with pmd[vision] CamCube 2.0

(e) with unmultiplexed S3 cameras (f) with multiplexed S3 cameras

Figure A.3.: Distance observed over 100 iterations by Kinect v1 for static target at a
distance of 1.13 m in presence of different other cameras and systems.
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B. Pinhole camera model

The basic pinhole camera model calculates the 2D projection of a 3D scene point
at world coordinates (X, Y, Z) based on the focal length fx, fy and principal point
(cx, cy) of the camera as well as the pose of the camera in world coordinates as
given by the transformation matrix R with rotational components r11, . . . , r33 and
translational vector t = (t1, t2, t3)

>:

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1

 (B.1)

The simple pinhole model does not take into account distortions of a real optical
system, such as radial and tangential distortions caused by lenses. Therefore,
distortion coefficients are introduced to model these properties. In this thesis, the
camera model implemented for bundle adjustment is based on the OpenCV model
for camera calibration [138], which in term is similar to those introduced by Claus
and Fitzgibbon [21, 35].

Equation B.1 can be rewritten in the following steps by transforming world coor-
dinates (X, Y, Z) to coordinates (x, y, z) in the camera coordinate system as

xy
z

 = R ∗

XY
Z

 + t. (B.2)

Provided that z 6= 0, the projection to pixel space is performed by

x′ = x/z
y′ = y/z

(B.3)

u = fx · x′ + cx
v = fy · y′ + cy

(B.4)

To take distortion into account, instead of directly calculating the pixel coordinate
(u, v) as in Equation B.4, the radial distortion coefficients k1, .., k6 and tangential
distortion coefficients p1, p2 are introduced as
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B. Pinhole camera model

x′′ = x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′

with r2 = x′2 + y′2.

(B.5)

The resulting pixel coordinates are then calculated as

u = fx ∗ x′′ + cx
v = fy ∗ y′′ + cy

. (B.6)
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Acronyms

AABB Axis-Aligned Bounding Box.

AR Augmented Reality.

CAD Computer Aided Design.

CUDA Compute Unified Device Architecture.

DLR German Aerospace Center.

DoF Degrees of Freedom.

FDA Food and Drug Administration.

FoV Field of View.

GPGPU General-Purpose Computing on Graphics Processing Unit.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HMD Head-Mounted Display.

IQR Interquartile Range.

IR Infrared.

ISO International Organization for Standardization.

LBR Light Weight Robot.

LoS Line of Sight.

MIRS Minimally Invasive Robotic Surgery.

MIS Minimally Invasive Surgery.

MR Mixed Reality.

OpenCV Open Source Computer Vision.
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Acronyms

OR Operating Room.

OTS Optical Tracking System.

PCA Principal Component Analysis.

PCL Point Cloud Library.

PMD Photonic Mixer Device.

POV Point of View.

RANSAC Random Sample Consensus.

RASD Robot Assisted Surgical Device.

ROI Region of Interest.

ROS Robot Operating System.

RPC Remote Procedure Call.

SAFROS Patient Safety in Robotic Surgery.

SAR Spatial Augmented Reality.

SBI Suppression of Backlight Illumination.

SFF Small Form Factor.

SfP Shape from Polarization.

SNR Signal-to-Noise-Ratio.

SoC System on a Chip.

SPI Spatial Phase Imaging.

SSI Surgical Site Infection.

SVG Scalable Vector Graphics.

ToF Time-of-Flight.

VR Virtual Reality.
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Michael J. Cree, Reinhard Koch, and Andreas Kolb. Technical Foundation
and Calibration Methods for Time-of-Flight Cameras. In Marcin Grzegorzek,
editor, Time-of-Flight and depth imaging, volume 8200 of Lecture notes in com-
puter science, state-of-the-art survey, pages 3–24. Springer, Heidelberg, 2013.

[105] Wim Lemkens, Prabhdeep Kaur, Koen Buys, Peter Slaets, Tinne Tuytelaars,
and Joris de Schutter. Multi RGB-D camera setup for generating large
3D point clouds. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 1092–1099. IEEE, 2013.

[106] Cristian A. Linte, Katherine P. Davenport, Kevin Cleary, Craig Peters,
Kirby G. Vosburgh, Nassir Navab, Philip Eddie Edwards, Pierre Jannin,
Terry M. Peters, David R. Holmes, and Richard A. Robb. On mixed reality
environments for minimally invasive therapy guidance: systems architec-
ture, successes and challenges in their implementation from laboratory to

180



BIBLIOGRAPHY

clinic. Computerized Medical Imaging and Graphics : The Official Journal of the
Computerized Medical Imaging Society, 37(2):83–97, 2013.

[107] Nicolas Loy Rodas and Nicolas Padoy. Seeing is believing: increasing
intraoperative awareness to scattered radiation in interventional procedures
by combining augmented reality, Monte Carlo simulations and wireless
dosimeters. International journal of computer assisted radiology and surgery,
10(8):1181–1191, 2015.

[108] Lytro. Lytro Illum. https://store.lytro.com/products/lytro-illum. [Online;
accessed 11.01.2016].

[109] Kamal Maheshwari. Operating Room Design Manual: Chapter 9: Room
Ventilation Systems. https://www.asahq.org/resources/resources-from-
asa-committees/operating-room-design-manual, 2012. [Online; accessed
05.02.2016].

[110] Aruna D. Mane, Sirkazi Mohd Arif, and Waleed Abdu Rahiman. An Ad-
vanced Robot -Robin Heart (A Surgeon without Hand Tremor). International
Journal of Engineering and Advanced Technology (IJEAT), 2013(5):242–251, 2013.

[111] R. Marmulla, Harald Hoppe, J. Mühling, and G. Eggers. An augmented
reality system for image-guided surgery. International Journal of Oral and
Maxillofacial Surgery, 34(6):594–596, 2005.

[112] David Marr. Vision: A computational investigation into the human representation
and processing of visual information. MIT Press, Cambridge Mass. u.a., 2010.

[113] Manuel Martinez and Rainer Stiefelhagen. Kinect Unleashed: Getting Con-
trol over High Resolution Depth Maps Vision Applications. In Machine Vision
Applications (MVA 2013), Proceedings of the 13. IAPR International Conference
on, pages 247–250, 2013.

[114] Manuel Martinez and Rainer Stiefelhagen. Kinect Unbiased. In Image
Processing (ICIP), 2014 IEEE International Conference on, pages 5791–5795,
2014.

[115] Sergio E. Martinez Herrera, Abed Malti, Olivier Morel, and Adrien Bartoli.
Shape-from-Polarization in laparoscopy. In Biomedical Imaging (ISBI 2013),
2013 IEEE 10th International Symposium on, pages 1412–1415, 2013.
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